Journal of Synthetic Crystals, Volume. 50, Issue 12, 2225(2021)
Study on the Formation Mechanism of Al(In) Nanostructures on GaAs(001) by Droplet Epitaxy
[1] [1] JIANG J K, LI Y, CHANG F R, et al. MBE growth of mid-wavelength infrared photodetectors based on high quality InAs/AlAs/InAsSb superlattice[J]. Journal of Crystal Growth, 2021, 564: 126109.
[2] [2] GOLOVYNSKYI S, DATSENKO O I, SERAVALLI L, et al. InAs/InGaAs quantum dots confined by InAlAs barriers for enhanced room temperature light emission: photoelectric properties and deep levels[J]. Microelectronic Engineering, 2021, 238: 111514.
[3] [3] ALNAMI N, KUMAR R, KUCHUK A, et al. InAs nanostructures for solar cell: improved efficiency by submonolayer quantum dot[J]. Solar Energy Materials and Solar Cells, 2021, 224: 111026.
[4] [4] BARSEGHYAN M G, MANASELYAN A K, LAROZE D, et al. Impurity-modulated Aharonov-Bohm oscillations and intraband optical absorption in quantum dot-ring nanostructures[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 81: 31-36.
[5] [5] ZHAO Z Y, MIN Y, HUANG Y Y. Photon-assisted transport through an Aharonov-Bohm ring with a side-coupled double quantum dots[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 114: 113589.
[6] [6] LI H D, WANG Y, LIU S H, et al. Spin thermoelectric properties based on a Rashba triple-quantum-dot ring[J]. Journal of Applied Physics, 2018, 124(8): 085103.
[7] [7] SU L L, LIANG B L, WANG Y, et al. Abnormal photoluminescence for GaAs/Al0.2Ga0.8As quantum dot-ring hybrid nanostructure grown by droplet epitaxy[J]. Journal of Luminescence, 2018, 195: 187-192.
[8] [8] ZHAO X, ZHENG J, YUAN R Y, et al. Fano resonance and power output in a quantum-dot-embedded Aharonov-Bohm ring subjected to THz irradiation[J]. Current Applied Physics, 2019, 19(4): 447-451.
[9] [9] YI G Y, WANG X Q, GONG W J, et al. Josephson effect in a triple-quantum-dot ring with one dot coupled to superconductors: numerical renormalization group calculations[J]. Physics Letters A, 2016, 380(14/15): 1385-1391.
[10] [10] BARSEGHYAN M G, KIRAKOSYAN A A, LAROZE D. Laser driven intraband optical transitions in two-dimensional quantum dots and quantum rings[J]. Optics Communications, 2017, 383: 571-576.
[11] [11] LEON R, PETROFF P M, LEONARD D, et al. Spatially resolved visible luminescence of self-assembled semiconductor quantum dots[J]. Science, 1995, 267(5206): 1966-1968.
[12] [12] FAFARD S, LEON R, LEONARD D, et al. Visible photoluminescence from N-dot ensembles and the linewidth of ultrasmallAlyIn1-yAs/AlxGa1-xAs quantum dots[J]. Physical Review B, 1994, 50(11): 8086-8089.
[13] [13] GAPONENKO M S, LUTICH A A, TOLSTIK N A, et al. Temperature-dependent photoluminescence of PbS quantum dots in glass: evidence of exciton state splitting and carrier trapping[J]. Physical Review B, 2010, 82(12): 125320.
[14] [14] DE MELLO DONEG C, BODE M, MEIJERINK A. Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots[J]. Physical Review B, 2006, 74(8): 085320.
[15] [15] SELLAMI N, MELLITI A, SAHLI A, et al. The effect of the excitation and of the temperature on the photoluminescence circular polarization of AlInAs/AlGaAs quantum dots[J]. Applied Surface Science, 2009, 256(5): 1409-1412.
[16] [16] YOFFE A D. Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems[J]. Advances in Physics, 2001, 50(1): 1-208.
[17] [17] KOGUCHI N, ISHIGE K. Growth of GaAs epitaxial microcrystals on an S-terminated GaAs substrate by successive irradiation of Ga and as molecular beams[J]. Japanese Journal of Applied Physics, 1993, 32(Part 1, No. 5A): 2052-2058.
[18] [18] CHIKYOW T, KOGUCHI N. Microcrystal growth of GaAs on a Se-terminated GaAlAs surface for the quantum-well box structure by sequential supplies of Ga and As molecular beams[J]. Applied Physics Letters, 1992, 61(20): 2431-2433.
[19] [19] KIM J S, KOGUCHI N. Near room temperature droplet epitaxy for fabrication of InAs quantum dots[J]. Applied Physics Letters, 2004, 85(24): 5893-5895.
[20] [20] MANO T, WATANABE K, TSUKAMOTO S, et al. New self-organized growth method for InGaAs quantum dots on GaAs(001) using droplet epitaxy[J]. Japanese Journal of Applied Physics, 1999, 38(Part 2, No. 9A/B): L1009-L1011.
[21] [21] MANO T, WATANABE K, TSUKAMOTO S, et al. Nanoscale InGaAs concave disks fabricated by heterogeneous droplet epitaxy[J]. Applied Physics Letters, 2000, 76(24): 3543-3545.
[22] [22] KOGUCHI N, TAKAHASHI S, CHIKYOW T. New MBE growth method for InSb quantum well boxes[J]. Journal of Crystal Growth, 1991, 111(1/2/3/4): 688-692.
[23] [23] WANG Y, GUO X, WEI J M, et al. Effect of initial crystallization temperature and surface diffusion on formation of GaAs multiple concentric nanoring structures by droplet epitaxy[J]. Chinese Physics B, 2020, 29(4): 046801.
[24] [24] CHEN Z B, LEI W, CHEN B, et al. Elemental diffusion during the droplet epitaxy growth of In(Ga)As/GaAs(001) quantum dots by metal-organic chemical vapor deposition[J]. Applied Physics Letters, 2014, 104(2): 022108.
[25] [25] MANCA P. A relation between the binding energy and the band-gap energy in semiconductors of diamond or zinc-blende structure[J]. Journal of Physics and Chemistry of Solids, 1961, 20(3/4): 268-273.
[26] [26] ZOCHER M, HEYN C, HANSEN W. Droplet etching with indium-intermixing and lattice mismatch[J]. Journal of Crystal Growth, 2019, 512: 219-222.
[27] [27] HEYN C, SCHNLL S, HANSEN W. Scaling of the structural characteristics of nanoholes created by local droplet etching[J]. Journal of Applied Physics, 2014, 115(2): 024309.
Get Citation
Copy Citation Text
WANG Yi, LI Zhihong, DING Zhao, YANG Chen, LUO Zijiang, WANG Jihong, GUO Xiang. Study on the Formation Mechanism of Al(In) Nanostructures on GaAs(001) by Droplet Epitaxy[J]. Journal of Synthetic Crystals, 2021, 50(12): 2225
Category:
Received: Aug. 20, 2021
Accepted: --
Published Online: Feb. 15, 2022
The Author Email: WANG Yi (ywang16@gzu.edu.cn)
CSTR:32186.14.