Chinese Optics Letters, Volume. 20, Issue 3, 031404(2022)
New ultrashort pulsewidth measurement technology based on interference jitter and FPGA platform
[1] M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A. F. Fercher. Full range complex spectral optical coherence tomography technique in eye imaging. Opt. Lett., 27, 1415(2002).
[2] K. N. Joo, S. W. Kim. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt. Express, 14, 5954(2006).
[3] J. H. Bruning. Digital wavefront measuring interferometer for testing optical surfaces and lenses. Appl. Opt., 13, 2693(1974).
[4] J. J. Zondy, D. Kolker, C. Bonnin, D. Lupinski. Second-harmonic generation with monolithic walk-off-compensating periodic structures. II. Experiments. J. Opt. Soc. Am. B, 20, 1695(2003).
[5] N. Pontius, A. V. Neeb, W. Eberhardt, G. Lüttgens, P. S. Bechthold. Ultrafast relaxation dynamics of optically excited electrons in Ni3-. Phys. Rev. B, 67, 106(2003).
[6] D.-N. Wang. Review of femtosecond laser fabricated optical fiber high temperature sensors [Invited]. Chin. Opt. Lett., 19, 091204(2021).
[7] M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, N. F. van Hulst. Tracking femtosecond laser pulses in space and time. Science, 294, 1080(2001).
[8] H. P. Weber. Method for pulsewidth measurement of ultrashort light pulses generated by phase-locked laser using nonlinear optics. J. Appl. Phys., 38, 2231(1967).
[9] D. J. Kane, R. Trebino. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE J. Quantum Electron., 29, 571(1993).
[10] R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. KrumbüGel, B. A. Richman, D. J. Kane. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum., 68, 3277(1997).
[11] S. D. Yang, A. M. Weiner, K. R. Parameswaran, M. M. Fejer. 400-photon-per-pulse ultrashort pulse autocorrelation measurement with aperiodically poled lithium niobate waveguides at 1.55 µm. Opt. Lett., 29, 2070(2004).
[12] D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, I. A. Walmsley. Measurement of the intensity and phase of ultraweak, ultrashort laser pulses. Opt. Lett., 21, 884(1996).
[13] J. Gagnon, E. Goulielmakis, V. S. Yakovlev. The accurate FROG characterization of attosecond pulses from streaking measurements. Appl. Phys. B, 92, 25(2008).
[14] C. Iaconis, I. A. Walmsley. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett., 23, 792(1998).
[15] G. Stibenz, G. Steinmeyer. Optimizing spectral phase interferometry for direct electric-field reconstruction. Rev. Sci. Instrum., 77, 073105(2006).
[16] J. Bromage, C. Dorrer, I. A. Begishev, N. G. Usechak, J. D. Zuegel. Highly sensitive, single-shot characterization for pulse widths from 0.4 to 85 ps using electro-optic shearing interferometry. Opt. Lett., 31, 3523(2006).
[17] A. Hayat, A. Nevet, P. Ginzburg, M. Orenstein. Applications of two-photon processes in semiconductor photonic devices: invited review. Semicond. Sci. Technol., 26, 083001(2011).
[18] U. Steinmeyer. A review of ultrafast optics and optoelectronics. J. Opt. A, 5, R1(2003).
[19] W. Tawfik. Precise measurement of ultrafast laser pulses using spectral phase interferometry for direct electric-field reconstruction. J. Nonlinear Opt. Phys. Mater., 24, 1550040(2015).
[20] J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, D. A. Wiersma. Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode. Opt. Lett., 22, 1344(1997).
[21] J. M. Roth, T. E. Murphy, C. Xu. Ultrasensitive and high-dynamic-range two-photon absorption in a GaAs photomultiplier tube. Opt. Lett., 27, 2076(2002).
[22] E. Z. Chong, T. F. Watson, F. Festy. Autocorrelation measurement of femtosecond laser pulses based on two-photon absorption in GaP photodiode. Appl. Phys. Lett., 105, 062111(2014).
[23] P. Xiao, K. Wu, D. Mao, J. Chen. A pulsewidth measurement technology based on carbon-nanotube saturable absorber. Opt. Express, 27, 4188(2019).
[24] J. Chen, M. Wang, W. Xia. Neural-network-assisted femtosecond laser pulse duration measurement using two-photon absorption. Chin. Opt. Lett., 18, 121901(2020).
[25] D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, J. D. Harvey. Commercial semiconductor devices for two photon absorption autocorrelation of ultrashort light pulses. Appl. Opt., 37, 8142(1998).
[26] G. Cong, O. Makoto, M. Yuriko, O. Morifumi, Y. Koji. Interferometric autocorrelation of ultrafast optical pulses in silicon sub-micrometer p-i-n waveguides. Opt. Express, 26, 15090(2018).
[27] M. Valadan, D. D’Ambrosio, F. Gesuele, R. Velotta, C. Altucci. Linear optical methods for temporal characterization of femtosecond UV pulses. Proc. SPIE, 9135, 91350G(2014).
[28] X. Shen, J. Liu, F. Li, P. Wang, R. Li. Extended transient-grating self-referenced spectral interferometry for sub-100 nJ femtosecond pulse characterization. Chin. Opt. Lett., 13, 081901(2015).
[29] X. Shen, P. Wang, J. Liu, R. Li. Compact transient-grating self-referenced spectral interferometry for sub-nanojoule femtosecond pulse characterization. Appl. Opt., 56, 582(2017).
[30] M. Miranda, C. L. Arnold, T. Fordell, F. Silva, B. Alonso, R. Weigand, A. L’Huillier, H. Crespo. Characterization of broadband few-cycle laser pulses with the d-scan technique. Opt. Express, 20, 18732(2012).
Get Citation
Copy Citation Text
Jin Li, Yanbo Dou, Lixin Wang, Jinhai Zou, Yu Ding, Hang Wang, Qiujun Ruan, Zhipeng Dong, Zhengqian Luo, "New ultrashort pulsewidth measurement technology based on interference jitter and FPGA platform," Chin. Opt. Lett. 20, 031404 (2022)
Category: Lasers, Optical Amplifiers, and Laser Optics
Received: Nov. 15, 2021
Accepted: Dec. 13, 2021
Posted: Dec. 14, 2021
Published Online: Jan. 14, 2022
The Author Email: Zhengqian Luo (zqluo@xmu.edu.cn)