Laser & Optoelectronics Progress, Volume. 60, Issue 2, 0228003(2023)

Multiscale Object Detection Algorithm for Satellite Remote-Sensing Images

Jianhong Xiang1,2, Zhenxing Chen1,2, and Linyu Wang1,2、*
Author Affiliations
  • 1College of Information & Communication Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China
  • 2Key Laboratory of Advanced Ship Communication and Information Technology, Harbin Engineering University, Harbin 150001, Heilongjiang, China
  • show less
    Figures & Tables(15)
    YOLOv5 network structure diagram
    Mosaic data augmentation. (a) (b) (c) Effect after use
    CAM structure diagram
    SAM structure diagram
    Structure comparison between FPN+PAN and WMFPN
    Fusion network structure of P4 layer
    Output feature map comparison between proposed network and original network. (a) Original picture; (b) original network feature map; (c) proposed network feature map
    YOLOv5-WMFPN structure diagram
    DIOR optical remote sensing image dataset categories. (a) Airplane; (b) airport; (c) baseball field; (d) basketball count; (e) bridge; (f) chimney; (g) dam; (h) expressway service area; (i) expressway toll station; (j) golf course; (k) ground track field; (l) harbor; (m) overpass; (n) ship; (o) stadium; (p) storage tank; (q) tennis court; (r) train station; (s) vehicle; (t) wind mill
    Airplane and wind mill object detection. (a) (b) YOLOv5m airplane; (c) (d) YOLOv5m wind mill; (e) (f) YOLOv5m-WMFPN airplane; (g) (h) YOLOv5m-WMFPN wind mill
    Vehicle and ship object detection. (a) (b) YOLOv5m vehicle; (c) (d) YOLOv5m ship; (e) (f) YOLOv5m-WMFPN vehicle; (g) (h) YOLOv5m-WMFPN ship
    • Table 1. Comparison of various APs between YOLOv5-WMFPN and YOLOv5m algorithm

      View table

      Table 1. Comparison of various APs between YOLOv5-WMFPN and YOLOv5m algorithm

      Algorithmc1c2c3c4c5c6c7c8c9c10
      YOLOv5m78.478.273.888.14577.564.36259.677.9
      YOLOv5m-WMFPN89.18374.491.9478264.663.66579.2
      Algorithmc11c12c13c14c15c16c17c18c19c20
      YOLOv5m72.660.458.488.965.676.686.76355.177
      YOLOv5m-WMFPN77.363.161.189.269.377.489.764.858.681.3
    • Table 2. Overall effect comparison between YOLOv5m-WMFPN and YOLOv5m

      View table

      Table 2. Overall effect comparison between YOLOv5m-WMFPN and YOLOv5m

      AlgorithmP /%R /%mAP@0.5 /%mAP@[.5:.95] /%Detection speed /(frame·s-1
      YOLOv5m86.165.370.546.6113.6
      YOLOv5m-WMFPN84.968.273.650.5102.0
    • Table 3. Ablation experiment results

      View table

      Table 3. Ablation experiment results

      ExperimentMFPNWMFPNCBAMmAP /%Detection speed /(frame·s-1
      170.5113.6
      271.2109.4
      371.5107.3
      473.3106.1
      573.6102.0
    • Table 4. Performance comparison of each algorithm

      View table

      Table 4. Performance comparison of each algorithm

      AlgorithmBackboneNeckmAP /%
      Faster RCNNVGG1657.6
      Faster RCNN-FPNResNet50FPN67.4
      SSDVGG1654.3
      Yolov3Darknet53FPN64.2
      Yolov3-SPPDarknet53FPN67.5
      Efficientdet-d2EfficientnetBiFPN55..5
      Efficientdet-d4EfficientnetBiFPN63.9
      YOLOv5sC3CSPFPN+PAN67.2
      YOLOv5mC3CSPFPN+PAN70.5
      YOLOv5m-WMFPNC3CSP-CBAMWMFPN73.6
    Tools

    Get Citation

    Copy Citation Text

    Jianhong Xiang, Zhenxing Chen, Linyu Wang. Multiscale Object Detection Algorithm for Satellite Remote-Sensing Images[J]. Laser & Optoelectronics Progress, 2023, 60(2): 0228003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Oct. 8, 2021

    Accepted: Nov. 16, 2021

    Published Online: Jan. 6, 2023

    The Author Email: Linyu Wang (wanglinyu@hrbeu.edu.cn)

    DOI:10.3788/LOP212670

    Topics