Journal of Semiconductors, Volume. 43, Issue 4, 041103(2022)
Study of structure-property relationship of semiconductor nanomaterials by off-axis electron holography
[1] M M Waldrop. The chips are down for Moore's law. Nature, 530, 144(2016).
[2] L Li, Z Gan, M R McCartney et al. Atomic configurations at InAs partial dislocation cores associated with Z-shape faulted dipoles. Sci Rep, 3, 3229(2013).
[3] L Li, F Tu, L Jin et al. Polarity continuation and frustration in ZnSe nanospirals. Sci Rep, 4, 7447(2014).
[4] D J Smith. Atomic-resolution structure imaging of defects and interfaces in compound semiconductors. Prog Cryst Growth Charact Mater, 66, 100498(2020).
[5] W L Bragg. Microscopy by reconstructed wave-fronts. Nature, 166, 399(1950).
[6] A V Crewe, M Isaacson, D Johnson. A simple scanning electron microscope. Rev Sci Instrum, 40, 241(1969).
[7] J M Cowley. Twenty forms of electron holography. Ultramicroscopy, 41, 335(1992).
[8] L Y Li, X K Hu, Y H Gao. Electron holographic study of semiconductor light-emitting diodes. Small, 14, 1701996(2018).
[9] H Lichte, P Formanek, A Lenk et al. Electron holography: Applications to materials questions. Annu Rev Mater Res, 37, 539(2007).
[10] M R McCartney, M Gajdardziska-Josifovska. Absolute measurement of normalized thickness,
[11] M A Gribelyuk, M R McCartney, J Li et al. Mapping of electrostatic potential in deep submicron CMOS devices by electron holography. Phys Rev Lett, 89, 025502(2002).
[12] M I den Hertog, H Schmid, D Cooper et al. Mapping active dopants in single silicon nanowires using off-axis electron holography. Nano Lett, 9, 3837(2009).
[13] L Y Li, D J Smith, E Dailey et al. Observation of hole accumulation in Ge/Si core/shell nanowires using off-axis electron holography. Nano Lett, 11, 493(2011).
[14] Z F Gan, M Gu, J S Tang et al. Direct mapping of charge distribution during lithiation of Ge nanowires using off-axis electron holography. Nano Lett, 16, 3748(2016).
[15] L Zhou, D J Smith, M R McCartney et al. Measurement of electric field across individual wurtzite GaN quantum dots using electron holography. Appl Phys Lett, 99, 101905(2011).
[16] M R McCartney, R E Dunin-Borkowski, D J Smith. Quantitative measurement of nanoscale electrostatic potentials and charges using off-axis electron holography: Developments and opportunities. Ultramicroscopy, 203, 105(2019).
[17] F Kern, M Linck, D Wolf et al. Autocorrected off-axis holography of two-dimensional materials. Phys Rev Res, 2, 043360(2020).
[18] L Y Li, S Ketharanathan, J Drucker et al. Study of hole accumulation in individual germanium quantum dots in p-type silicon by off-axis electron holography. Appl Phys Lett, 94, 232108(2009).
[19] Z F Gan, D E Perea, J Yoo et al. Characterization of electrical properties in axial Si-Ge nanowire heterojunctions using off-axis electron holography and atom-probe tomography. J Appl Phys, 120, 104301(2016).
[20] F Cheng, B Li, L Y Li et al. Study of the polarization effect in InAs quantum dots/GaAs nanowires. J Phys Chem C, 123, 4228(2019).
[21] C Li, Y F Cheng, B Li et al. Study of charge distributions and electrical properties in GaAs/AlGaAs single quantum well/nanowire heterostructures. J Phys Chem C, 123, 26888(2019).
[22] T Y Qi, Y F Cheng, F Cheng et al. Study of nanometer-scale structures and electrostatic properties of InAs quantum dots decorating GaAs/AlAs core/shell nanowires. Nanotechnology, 31, 245701(2020).
[23] M den Hertog, R Songmuang, E Monroy. Polarization fields in GaN/AlN nanowire heterostructures studied by off-axis holography. J Phys: Conf Ser, 471, 012019(2013).
[24] X Chen, Y G Wang, J Guo et al.
[25] X Chen, Y G Wang, J K Jian et al. Effect of strain on space charge layer in GaN nanowires investigated by
[26] X Chen, Y G Wang, J K Jian et al. Controlling charges distribution at the surface of a single GaN nanowire by
[27] M den Hertog, F Donatini, R McLeod et al.
[28] F Jiang, J W Chen, H Bi et al. The underlying micro-mechanism of performance enhancement of non-polar n-ZnO/p-AlGaN ultraviolet light emitting diode with i-ZnO inserted layer. Appl Phys Lett, 112, 033505(2018).
[29] X Li, C Y Wen, L T Yang et al. Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance. J Alloys Compd, 869, 159365(2021).
[30] L S Xing, X Li, Z C Wu et al. 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem Eng J, 379, 122241(2020).
[31] T Kawasaki, Y Takahashi, T Tanigaki. Holography: application to high-resolution imaging. Microscopy, 70, 39(2020).
[32] D Wolf, A Lubk, P Prete et al. 3D mapping of nanoscale electric potentials in semiconductor structures using electron-holographic tomography. J Phys D, 49, 364004(2016).
[33] L Z Y Liu, C McAleese, D V Sridhara Rao et al. Electron holography of an
[34] S Yazdi, T Kasama, M Beleggia et al. Towards quantitative electrostatic potential mapping of working semiconductor devices using off-axis electron holography. Ultramicroscopy, 152, 10(2015).
Get Citation
Copy Citation Text
Luying Li, Yongfa Cheng, Zunyu Liu, Shuwen Yan, Li Li, Jianbo Wang, Lei Zhang, Yihua Gao. Study of structure-property relationship of semiconductor nanomaterials by off-axis electron holography[J]. Journal of Semiconductors, 2022, 43(4): 041103
Category: Reviews
Received: Nov. 6, 2021
Accepted: --
Published Online: Apr. 25, 2022
The Author Email: