Acta Laser Biology Sinica, Volume. 31, Issue 3, 261(2022)

Observation of Mice Corneal Wound Healing after 3.74 μm Laser Irradiation

YIN Yixue1,2, JIAO Luguang2, WANG Jiarui2, WANG Chao2, REN Ziqi2, ZHAO Yilong2, ZHENG Hong1, and YANG Zaifu1,2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(26)

    [1] [1] VAINIO M, SILTANEN M, PELTOLA J, et al. Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy[J]. Applied Optics, 2011, 50(4): A1-A10.

    [2] [2] WILLER U, SARAJI M, KHORSANDI A, et al. Near- and mid-infrared laser monitoring of industrial processes, environment and security applications[J]. Optics and?Lasers?in Engineering, 2006, 44(7): 699-710.

    [3] [3] TUTTLE R. Large aircraft infrared countermeasures system[J]. Aerospace Daily Defense Report, 2004, 210(3): 6-7.

    [4] [4] GROSS P, KLEIN M E, WALDE T, et al. Fiber-laser-pumped continuous-wave singly resonant optical parametric oscillator[J]. Optics Letters, 2002, 27(6): 418-420.

    [5] [5] HENDERSON A, STAFFORD R. Low threshold, singly-resonant CW OPO pumped by an all-fiber pump source[J]. Optics Express, 2006, 14(2): 767-772.

    [6] [6] VAINIO M, PELTOLA J, PERSIJN S, et al. Singly resonant CW OPO with simple wavelength tuning[J]. Optics Express, 2008, 16(15): 11141-11146.

    [7] [7] RAMAIAH-BADARLA V, KUMAR S C, EBRAHIM-ZADEH M. Fiber-laser-pumped, dual-wavelength, picosecond optical parametric oscillator[J]. Optics Letters, 2014, 39(9): 2739-2742.

    [9] [9] MATTHES R, FEYCHTING M, CROFT R, et al. Guidelines on limits of exposure to laser radiation of wavelengths between 180?nm and 1 000 μm[J]. Health Physics, 2013, 105(3): 271-295.

    [12] [12] BLANCO G, CLAVERO A, SOPARKAR C N, et al. Periocular laser complications[J]. Seminars in Plastic Surgery, 2007, 21(1): 74-79.

    [13] [13] ZUCLICH J A, LUND D J, EDSALL P R, et al. High power lasers in the 1.3~1.4 μm wavelength range: ocular effects and safety standard implications[C]// Conference on Laser and Noncoherent Light Ocular Effects: Epidemiology, Prevention, and Treatment, 2001, 4246: 78-88.

    [14] [14] WANG J, JIAO L, CHEN H, et al. Corneal thermal damage threshold dependence on the exposure duration for near-infrared laser radiation at 1 319 nm[J]. Journal of Biomedical Optics, 2016, 21(1): 15011.

    [15] [15] JIAO L, WANG J, JING X, et al. Ocular damage effects from 1?338 nm pulsed laser radiation in a rabbit eye model[J]. Biomedical Optics Express, 2017, 8(5): 2745-2755.

    [16] [16] CHEN H, YANG Z, WANG J, et al. A comparative study on ocular damage induced by 1 319 nm laser radiation[J]. Lasers in Surgery and Medicine, 2011, 43(4): 306-312.

    [17] [17] CLARKE T F, JOHNSON T E, BURTON M B, et al. Corneal injury threshold in rabbits for the 1 540 nm infrared laser[J]. Aviation Space and Environmental Medicine, 2002, 73(8): 787-790.

    [18] [18] MCCALLY R L, BONNEY-RAY J, ZENAIDA D, et al. Corneal endothelial injury thresholds for exposures to 1.54 microm radiation[J]. Health Physics, 2007, 92(3): 205-211.

    [19] [19] MCPHERSON N A, EURELL T E, JOHNSON T E. Comparison of 1 540 nm laser-induced injuries in ex vivo and in vitro rabbit corneal models[J]. Journal of Biomedical Optics, 2007, 12(6): 064033.

    [20] [20] MCCALLY R L, FARRELL R A, BARGERON C B. Cornea epithelial damage thresholds in rabbits exposed to Tm:YAG laser radiation at 2.02 microns[J]. Lasers in Surgery and Medicine, 1992, 12(6): 598-603.

    [21] [21] MCCALLY R L, BARGERON C B. Corneal epithelial injury thresholds for multiple-pulse exposures to Tm:YAG laser radiation at 2.02 microms[J]. Health Physics, 2003, 85(4): 420-427.

    [22] [22] CHEN B, OLIVER J, DUTTA S, et al. Corneal minimal visible lesion thresholds for 2.0 microm laser radiation[J]. Journal of the Optical Society of America A, 2007, 24(10): 3080-3088.

    [23] [23] TOTH C A, CHIU E K, WINTER K P, et al. In vivo response to free electron laser incision of the rabbit cornea[J].?Lasers in Surgery and Medicine, 2001, 29(1): 44-52.

    [24] [24] MCCALLY R L, BARGERON C B. Epithelial damage thresholds for multiple-pulse exposures to 80 ns pulses of CO2 laser radiation[J]. Health Physics, 2001, 80(1): 41-46.

    [25] [25] JIAO L, WANG C, ZHANG K, et al. Corneal damage effects induced by infrared optical parametric oscillator radiation at 3?743?nm[J]. Journal of Innovative Optical Health Sciences, 2021, 14(2): 84-92.

    [27] [27] CHOI H, PHILLIPS C, OH J Y, et al. Comprehensive modeling of corneal alkali injury in the rat eye[J]. Current Eye Research, 2017, 42(10): 1348-1357.

    [28] [28] ZEPPIERI M, SALVETAT M L, BELTRAMI A, et al. Adipose derived stem cells for corneal wound healing after laser induced corneal lesions in mice[J]. Journal of Clinical Medicine, 2017, 6(12): 115.

    [29] [29] WOLF M, CLAY S M, ZHENG S, et al. Mmp12 inhibits corneal neovascularization and inflammation through regulation of

    Tools

    Get Citation

    Copy Citation Text

    YIN Yixue, JIAO Luguang, WANG Jiarui, WANG Chao, REN Ziqi, ZHAO Yilong, ZHENG Hong, YANG Zaifu. Observation of Mice Corneal Wound Healing after 3.74 μm Laser Irradiation[J]. Acta Laser Biology Sinica, 2022, 31(3): 261

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 16, 2022

    Accepted: --

    Published Online: Jul. 25, 2022

    The Author Email: Zaifu YANG (yangzf@bmi.ac.cn)

    DOI:10.3969/j.issn.1007-7146.2022.03.010

    Topics