Opto-Electronic Engineering, Volume. 50, Issue 8, 230060(2023)

Analysis of spherical aberration effect in super-oscillatory telescopic imaging system

Shaoyang Liu1, Wenjuan Du1、*, Jiao Jiao2, Na Yao2, Xu Sun2, Lei Ni3, and Wenkai Li4
Author Affiliations
  • 1School of Physics and Optoelectronics, Xiangtan University, Xiangtan, Hunan 411105, China
  • 2School of Aeronautics & Astronautics, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
  • 3School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
  • 4Assembly Center of Optical Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • show less
    References(39)

    [1] Napier-Munn T. A mathematical model to predict the resolution of double stars by amateurs and their telescopes[J]. J Double Star Obs, 4, 156-163(2008).

    [2] Farinas J, Simanek V, Verkman A S. Cell volume measured by total internal reflection microfluorimetry: application to water and solute transport in cells transfected with water channel homologs[J]. Biophys J, 68, 1613-1620(1995).

    [3] Klar T A, Jakobs S, Dyba M et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proc Natl Acad Sci U S A, 97, 8206-8210(2000).

    [4] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution fourier ptychographic microscopy[J]. Nat Photonics, 7, 739-745(2013).

    [5] Qin F, Li X P, Hong M H. From super-osciallatory lens to super-critical lens: surpassing the diffraction limit via light field modulation[J]. Opto-Electron Eng, 44, 757-771(2017).

    [6] Zhou Y, Liang G F, Wen Z Q et al. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electron Eng, 48, 210399(2021).

    [7] Berry M V, Popescu S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. J Phys A Math Gen, 39, 6965-6977(2006).

    [8] Davis B J, Karl W C, Swan A K et al. Capabilities and limitations of pupil-plane filters for superresolution and image enhancement[J]. Opt Express, 12, 4150-4156(2004).

    [9] Di Francia G T. Super-gain antennas and optical resolving power[J]. Nuovo Cim, 9, 426-438(1952).

    [10] Sheppard C J R, Campos J, Escalera J C et al. Three-zone pupil filters[J]. Opt Commun, 281, 3623-3630(2008).

    [11] Roy T, Rogers E T F, Yuan G H et al. Point spread function of the optical needle super-oscillatory lens[J]. Appl Phys Lett, 104, 231109(2014).

    [12] Huang F M, Kao T S, Fedotov V A et al. Nanohole array as a lens[J]. Nano Lett, 8, 2469-2472(2008).

    [13] Li M Y, Li W L, Li H Y et al. Controllable design of super-oscillatory lenses with multiple sub-diffraction-limit foci[J]. Sci Rep, 7, 1335(2017).

    [14] Zhou J W, Yao N, Zhao H Q et al. Theoretical study of super-oscillation telescope imaging with atmospheric turbulence[J]. Laser Technol, 47, 115-120(2023).

    [15] Rogers E T F, Lindberg J, Roy T et al. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nat Mater, 11, 432-435(2012).

    [16] Wang C T, Tang D L, Wang Y Q et al. Super-resolution optical telescopes with local light diffraction shrinkage[J]. Sci Rep, 5, 18485(2015).

    [17] Li W L, He P, Yuan W Z et al. Efficiency-enhanced and sidelobe-suppressed super-oscillatory lenses for sub-diffraction-limit fluorescence imaging with ultralong working distance[J]. Nanoscale, 12, 7063-7071(2020).

    [18] Lu X J, Guo Y H, Pu M B et al. Broadband achromatic metasurfaces for sub-diffraction focusing in the visible[J]. Opt Express, 29, 5947-5958(2021).

    [19] Li Z, Wang C T, Wang Y Q et al. Super-oscillatory metasurface doublet for sub-diffraction focusing with a large incident angle[J]. Opt Express, 29, 9991-9999(2021).

    [20] Legaria S, Pacheco-Peña V, Beruete M. Super-oscillatory metalens at terahertz for enhanced focusing with reduced side lobes[J]. Photonics, 5, 56(2018).

    [21] Li Z, Zhang T, Wang Y Q et al. Achromatic broadband super-resolution imaging by super-oscillatory metasurface[J]. Laser Photonics Rev, 12, 1800064(2018).

    [22] Zhang R Z, Guo Y H, Li X Y et al. Angular superoscillatory metalens empowers single-shot measurement of OAM modes with finer intervals[J]. Adv Opt Mater, 2300009(2023).

    [23] Lu X J, Li X Y, Guo Y H et al. Broadband high-efficiency polymerized liquid crystal metasurfaces with spin-multiplexed functionalities in the visible[J]. Photonics Res, 10, 1380-1393(2022).

    [24] Booth M J, Wilson T. Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin[J]. J Microsc, 200, 68-74(2000).

    [25] Booth M J, Neil M A A, Wilson T. Aberration correction for confocal imaging in refractive-index-mismatched media[J]. J Microsc, 192, 90-98(1998).

    [26] Gibson S F, Lanni F. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy[J]. J Opt Soc Am A, 8, 1601-1613(1991).

    [27] Kam Z, Kner P, Agard D et al. Modelling the application of adaptive optics to wide-field microscope live imaging[J]. J Microsc, 226, 33-42(2007).

    [28] Silvestri L, Sacconi L, Pavone F S. Correcting spherical aberrations in confocal light sheet microscopy: a theoretical study[J]. Microsc Res Tech, 77, 483-491(2014).

    [29] Lee J U, Yu S M. Analytic design procedure of three-mirror telescope corrected for spherical aberration, coma, astigmatism, and petzval field curvature[J]. J Opt Soc Korea, 13, 184-192(2009).

    [30] González-Acuña R G, Gutiérrez-Vega J C. Analytic formulation of a refractive-reflective telescope free of spherical aberration[J]. Opt Eng, 58, 085105(2019).

    [31] Yu D Y, Tan H Y. Engineering Optics[M](2016).

    [32] Zhang R N, Cai Z W, Sun J S et al. Optical-field coherence measurement and its applications in computational imaging[J]. Laser Optoelectron Prog, 58, 1811003(2021).

    [33] Hegedus Z S, Sarafis V. Superresolving filters in confocally scanned imaging systems[J]. J Opt Soc Am A, 3, 1892-1896(1986).

    [34] Martinez-Corral M, Caballero M, Stelzer E H K et al. Tailoring the axial shape of the point spread function using the Toraldo concept[J]. Opt Express, 10, 98-103(2002).

    [35] Liu H T, Yan Y B, Tan Q F et al. Theories for the design of diffractive superresolution elements and limits of optical superresolution[J]. J Opt Soc Am A, 19, 2185-2193(2002).

    [36] Liu H T, Yan Y B, Yi D E et al. Theories for the design of a hybrid refractive-diffractive superresolution lens with high numerical aperture[J]. J Opt Soc Am A, 20, 913-924(2003).

    [37] Mahajan V N. Zernike circle polynomials and optical aberrations of systems with circular pupils[J]. Appl Opt, 33, 8121-8124(1994).

    [38] Goodman J W. Introduction to Fourier Optics[M], 135(2005).

    [39] Xu B, Wang Z Q, He J P. Super-resolution imaging via aperture modulation and intensity extrapolation[J]. Sci Rep, 8, 15216(2018).

    Tools

    Get Citation

    Copy Citation Text

    Shaoyang Liu, Wenjuan Du, Jiao Jiao, Na Yao, Xu Sun, Lei Ni, Wenkai Li. Analysis of spherical aberration effect in super-oscillatory telescopic imaging system[J]. Opto-Electronic Engineering, 2023, 50(8): 230060

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Mar. 14, 2023

    Accepted: May. 13, 2023

    Published Online: Nov. 15, 2023

    The Author Email:

    DOI:10.12086/oee.2023.230060

    Topics