NUCLEAR TECHNIQUES, Volume. 47, Issue 8, 080602(2024)

Optimal design of passive cooling system for the reactor lower cavity of molten salt reactor

Mudan MEI1,2, Chong ZHOU1,2、*, Yao FU1,2, Yang ZOU1,2, and Naxiu WANG1,2
Author Affiliations
  • 1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(20)
    Structure diagram of the lower reactor cabin for the molten salt reactor (a) Structure diagram of the lower reactor cabin, (b) Partial enlarged drawing of air-cooling system
    Diagram of heat transfer process in the lower reactor cabin
    Diagram of 1/4 geometric model of the lower reactor cabin
    Diagram of partial mesh form the lower reactor cabin in radial direction
    Wall temperature of each device from inside to outside in lower reactor cabin and outlet temperature
    Diagram of 1/4 structural model of air-cooling system with double channel
    Temperature contours of air-cooling system with double channel in the lower reactor cabin (a) Profile figure, (b) Inner wall temperature of safety vessel, (c) Inner wall temperature of normal concrete
    Simulation results corresponding to different widths of air ring chamber (a) Wall temperature of normal concrete, (b) Wall temperature of safety container, (c) Heat removal from air cooling system
    Simulation results corresponding to different distances from the bottom of the central heat shielding plate to the bottom of the air-cooling ring chamber (a) Wall temperature of normal concrete, (b) Wall temperature of safety container, (c) Heat removal from air-cooling system
    Diagram of 1/4 calculation model of a new air-cooling system with double channel
    Comparison of calculation results
    Calculation results at different thickness of insulation layer d
    Wall temperature counters of normal concrete at different thickness of insulation layer d(a) d=0.03 m, (b) d=0.04 m, (c) d=0.05 m, (d) d=0.06 m
    Velocity streamlines and inner/outer wall temperature counters of air cooling system (a) Flow field of inlet ring cavity, (b) Inner wall temperature of air cooling system, (c) Flow field of outlet ring cavity, (d) Outer wall temperature of air-cooling system
    Wall temperature counters of normal concrete at different inlet positions of the air inlet pipe to top of air cooling cavity(a) L=0.2 m, (b) L=0.5 m, (c) L=0.7 m, (d) L=2 m, (e) L=3.5 m, (f) L=6.5 m
    • Table 1. Design parameter of the lower reactor cabin for the 153 MWt MSR and its air-cooling system

      View table
      View in Article

      Table 1. Design parameter of the lower reactor cabin for the 153 MWt MSR and its air-cooling system

      参数名称Parameters值Value

      压力容器高

      Height of reactor pressure vessel / m

      8.17

      压力容器半径

      Radius of reactor pressure vessel / m

      1.86

      下舱室空气域宽

      Width of air zone in lower reactor cavity / m

      1

      冷却系统环腔宽

      Width of air ring cavity in cooling system / m

      0.2

      冷却系统环腔高

      Height of air ring cavity in cooling system / m

      6.97

      进出口高度差

      Height difference of inlet and outlet / m

      26

      上保温层厚

      Thickness of upper insulation layer / m

      1.2

      屏蔽钢板厚

      Thickness of shielding steel plate / m

      0.5

      侧/底面保温层厚

      Thickness of side/bottom insulation layer / m

      1.2/1

      安全容器厚

      Thickness of reactor safety vessel / m

      0.05

      侧/底面蛇纹石混凝土厚

      Thickness of side/bottom serpentine concrete / m

      1.2/1

      侧/底面混凝土厚

      Thickness of side/bottom concrete / m

      1.2/1
    • Table 2. Physical properties of the structural materials for the lower reactor cabin

      View table
      View in Article

      Table 2. Physical properties of the structural materials for the lower reactor cabin

      材料

      Materials

      密度

      Density

      / g·cm-3

      比热

      Specific heat

      / J·(kg·K)-1

      热导率

      Thermal conductivity

      / W·(m·K)-1

      N100038.66λ=31 208-101.85T+0.11T 2-4×10-5T 3λ=1 644.8-5.438T+0.006T 2-2×10-6T 3
      碳钢Carbon steel7.185470λ=72.289-0.039 1T-6×10-6T 2
      316H不锈钢316H stainless steel8.0350016.2
      硅酸铝纤维Alumina silicate fiber0.221 140λ=0.017-9×10-6T+2×10-7T 2
      蛇纹石混凝土Serpentine concrete2.509201.815
      普通混凝土Normal concrete2.509201.74
    • Table 3. Grid independence analysis

      View table
      View in Article

      Table 3. Grid independence analysis

      网格数量

      Mesh number

      混凝土内壁面温度

      Temperature of concrete inner wall / ℃

      空冷系统排热量

      Heat removal from cooling system / kW

      5 703 09681.47228.46
      6 111 52282.15249.53
      7 262 41582.71257.28
      8 514 53782.71257.28
    • Table 4. The comparison between CFD simulation and theoretical calculation

      View table
      View in Article

      Table 4. The comparison between CFD simulation and theoretical calculation

      参数名称

      Parameters

      安全容器壁面温度

      Wall temperature of

      safety container / ℃

      蛇纹石壁面温度

      Wall temperature of

      serpentine concrete / ℃

      混凝土壁面温度

      Wall temperature of

      normal concrete / ℃

      排热

      Heat removal

      / kW

      理论值Theoretical value131.4101.182.1263.54
      CFD值Simulation value132.2101.882.7257.28
      偏差Deviation / %0.610.690.732.38
    • Table 5. Optimal design schemes of the passive RCCS for a 153 MWt molten salt reactor

      View table
      View in Article

      Table 5. Optimal design schemes of the passive RCCS for a 153 MWt molten salt reactor

      方案优化步骤

      Optimization steps

      安全容器壁面最高温度

      Max wall temperature

      of safety vessel / ℃

      混凝土壁面最高温度

      Max wall temperature

      of safety vessel / ℃

      排热量

      Heat removal

      / kW

      初始结构(单通道空冷系统)

      Primary structure (single channel RCCS)

      155.694.5268.6

      舱室内双通道空冷系统,环腔宽度选择0.2 m

      double channel RCCS, and the air ring cavity is 0.2 m

      141.386.8447.3

      中间隔热板上添加保温棉,保温棉厚度调整为0.06 m

      Add insulation layer on the intermediate thermal shield plate,

      and change the thickness to 0.06 m

      102.769.1447.2

      调整进风管入口位置

      Change the inlet position of the air inlet pipe

      102.568.9447.5
    Tools

    Get Citation

    Copy Citation Text

    Mudan MEI, Chong ZHOU, Yao FU, Yang ZOU, Naxiu WANG. Optimal design of passive cooling system for the reactor lower cavity of molten salt reactor[J]. NUCLEAR TECHNIQUES, 2024, 47(8): 080602

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: NUCLEAR ENERGY SCIENCE AND ENGINEERING

    Received: Feb. 21, 2024

    Accepted: --

    Published Online: Sep. 23, 2024

    The Author Email: ZHOU Chong (周翀)

    DOI:10.11889/j.0253-3219.2024.hjs.47.080602

    Topics