Laser & Optoelectronics Progress, Volume. 54, Issue 11, 111006(2017)

Hyperspectral Image Classification Based on Principal Component Analysis and Local Binary Patterns

Ye Zhen and Bai Lin
Author Affiliations
  • [in Chinese]
  • show less
    References(19)

    [1] [1] Liu Dawei, Han Ling, Han Xiaoyong. High spatial resolution remote densing image classification based on deep learning[J]. Acta Optica Sinica, 2016, 36(4): 0428001.

    [2] [2] Li Tie, Sun Jinguang, Zhang Xinjun, et al. Research of hyperspectral image classification based on hierarchical sparse representation feature learning[J]. Laser & Optoelectronics Progress, 2016, 53(9): 091001.

    [3] [3] Prasad S, Bruce L M. Limitations of principal components analysis for hyperspectral target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 625- 629.

    [4] [4] Duda R O, Hart P E, Stork D G. Pattern Classification[M]. 2nd ed. New York: John Wiley & Sons, Inc., 2001.

    [5] [5] Xue Z, Li J, Cheng L, et al. Spectral-spatial classification of hyperspectral data via morphological component analysis-based image separation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 70-84.

    [6] [6] Ye Z, Prasad S, Li W, et al. Classification based on 3D DWT and decision fusion for hyperspectral image analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 173-177.

    [7] [7] Zhang L, Zhang L, Tao D, et al. On combining multiple features for hyperspectral remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 879-893.

    [8] [8] Sun L, Wu Z, Liu J, et al. Supervised spectral-spatial hypersepctral image classification with weighted Markov random fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1490-1503.

    [9] [9] Camps-Valls G, Bruzzone L. Kernel-based methods for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6): 1351-1362.

    [10] [10] Tarabalka Y, Fauvel M, Chanussot J, et al. SVM- and MRF-based method for accurate classification of hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 736-740.

    [11] [11] Li W, Prasad S, Fowler J E,et al. Locality-preserving dimensionality reduction and classification for hyperspectral image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1185-1198.

    [12] [12] Li W, Prasad S, J. E. Fowler. Hyperspectral image classification using Gaussian mixture models and Markov random fields[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 153-157.

    [14] [14] Ojala T, Pietikainen M, Maenpaa T T. Multiresolution gray-scale and rotation invariant texture classification with local binary pattern[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002, 24(7): 971-987.

    [15] [15] Chen Y, Nasrabadi N M, Tran T D. Hyperspectral image classification using dictionary-based sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3973-3985.

    [16] [16] Cheng Baozhi, Zhao Chunhui, Zhang Lili, et al. Joint spatial preprocessing and spectral clustering based collaborative sparsity anomaly detection for hyperspectral images[J]. Acta Optica Sinica, 2017, 37(4): 0428001.

    [17] [17] Li C, Ma Y, Mei X, et al. Hyperspectral image classification with robust sparse representation[J]. IEEE Geoscience and Remote Sensing Letters. 2016, 13(5): 641-645.

    [18] [18] Song Xiangfa, Jiao Licheng. Classification of hyperspectral remote sensing image based on sparse representation and spectral information[J]. Journal of Electronics & Information Technology, 2012, 34(2): 268-272.

    [19] [19] Pu H Y, Chen Z, Wang B, et al. A novel spatial-spectral similarity measure for dimensionality reduction and classification of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7008-7022.

    CLP Journals

    [1] Yang Huixian, Zhang Mengjuan, Liu Jian, Zeng Jinfang. Face Recognition Based on Double-Operation Local Directional Pattern[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101004

    Tools

    Get Citation

    Copy Citation Text

    Ye Zhen, Bai Lin. Hyperspectral Image Classification Based on Principal Component Analysis and Local Binary Patterns[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: May. 16, 2017

    Accepted: --

    Published Online: Nov. 17, 2017

    The Author Email:

    DOI:10.3788/lop54.111006

    Topics