Chinese Journal of Lasers, Volume. 51, Issue 14, 1401004(2024)
Research and Design of Wavefront Performance of Reflective Laser Beam Expander Under Thermal Environment
Fig. 4. Deformation cloud map of beam expander under 40 ℃ thermal load. (a) Overall deformation of the beam expander structure;
Fig. 6. Changes of the low-order Zernike coefficient of the system at 0 ℃ to 40 ℃
Fig. 7. Ambient temperature test platform. (a) Schematic diagram of testing optical path; (b) photos of the test site
Fig. 8. Ambient temperature test wavefront. (a) 0 ℃ test wavefront; (b) 20 ℃ test wavefront; (c) 40 ℃ test wavefront
Fig. 9. Comparison of simulation and test results. (a) Power variation of beam expander; (b) wavefront RMS variation of beam expander
Fig. 10. Compensation effect of different adhesive layer thicknesses on system wavefront and power. (a) Thermal compensation effect at 0 ℃ (spot diameter 10 mm); (b) thermal compensation effect at 40 ℃ (spot diameter 10 mm); (c) thermal compensation effect at 40 ℃ (layer thickness 0.25 mm)
Fig. 11. Simulation results of system wavefront after thermal compensation at different temperatures. (a) -10 ℃; (b) 0 ℃; (c) 10 ℃;
Fig. 12. Wavefront test results at different ambient temperatures. (a) 0 ℃; (b) 20 ℃; (c) 40 ℃
|
Get Citation
Copy Citation Text
Wenjie Fan, Zhaohui Li, Yong Liu, Huan Zhang, Shasha Yin. Research and Design of Wavefront Performance of Reflective Laser Beam Expander Under Thermal Environment[J]. Chinese Journal of Lasers, 2024, 51(14): 1401004
Category: laser devices and laser physics
Received: Jan. 24, 2024
Accepted: Mar. 11, 2024
Published Online: Jul. 2, 2024
The Author Email: Li Zhaohui (lizhaohui@opt.ac.cn)
CSTR:32183.14.CJL240531