Acta Optica Sinica, Volume. 42, Issue 4, 0431001(2022)

Waveguide Mechanism of Extraordinary Transmission Characteristics of Circular Hole Array on Metal Film

Runyu Xue, Zhengyu Wang, and Zhengling Wang*
Author Affiliations
  • School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
  • show less
    References(28)

    [1] Bethe H A. Theory of diffraction by small holes[J]. Physical Review, 66, 163-182(1944).

    [2] Ebbesen T W, Lezec H J, Ghaemi H F et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 391, 667-669(1998).

    [3] Barnes W L, Murray W A, Dintinger J et al. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film[J]. Physical Review Letters, 92, 107401(2004).

    [4] Koerkamp K J K, Enoch S et al. Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory[J]. Physical Review B, 72, 045421(2005).

    [5] Degiron A, Ebbesen T W. The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures[J]. Journal of Optics A, 7, S90-S96(2005).

    [6] Lezec H, Thio T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays[J]. Optics Express, 12, 3629-3651(2004).

    [7] Liu H T, Lalanne P. Microscopic theory of the extraordinary optical transmission[J]. Nature, 452, 728-731(2008).

    [8] Liu H T, Lalanne P. Light scattering by metallic surfaces with subwavelength patterns[J]. Physical Review B, 82, 115418(2010).

    [9] Zhang X, Liu H T, Zhong Y. Microscopic analysis of surface Bloch modes on periodically perforated metallic surfaces and their relation to extraordinary optical transmission[J]. Physical Review B, 89, 195431(2014).

    [10] Zhang X, Liu H T. Progress in extraordinary optical transmission[J]. Progress in Physics, 36, 118-127(2016).

    [11] Lalanne P, Rodier J C, Hugonin J P. Surface plasmons of metallic surfaces perforated by nanohole arrays[J]. Journal of Optics A, 7, 422-426(2005).

    [12] Martín-Moreno L. García-Vidal F J, Lezec H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Physical Review Letters, 86, 1114-1117(2001).

    [13] Pendry J B, Martín-Moreno L. Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces[J]. Science, 305, 847-848(2004).

    [14] Garcia-Vidal F J, Martín-Moreno L, Pendry J B. Surfaces with holes in them: new plasmonic metamaterials[J]. Journal of Optics A, 7, S97-S101(2005).

    [15] García-Vidal F J, Lezec H J, Ebbesen T W et al. Multiple paths to enhance optical transmission through a single subwavelength slit[J]. Physical Review Letters, 90, 213901(2003).

    [16] Yang F Z, Sambles J R. Resonant transmission of microwaves through a narrow metallic slit[J]. Physical Review Letters, 89, 063901(2002).

    [17] Drude P. Electronic theory of metals[J]. Annalen der Physik, 1, 566-613(1900).

    [18] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 6, 4370-4379(1972).

    [19] Linden S, Enkrich C, Wegener M et al. Magnetic response of metamaterials at 100 terahertz[J]. Science, 306, 1351-1353(2004).

    [20] Marcatili E A J, Schmeltzer R A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers[J]. The Bell System Technical Journal, 43, 1783-1809(1964).

    [21] Wang Z L, Dai M, Yin J P. Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow metallic waveguide[J]. Optics Express, 13, 8406-8423(2005).

    [22] Yin Y N, Xu S P, Li T et al. 2D surface optical lattice formed by plasmon polaritons with application to nanometer-scale molecular deposition[J]. Scientific Reports, 7, 7788(2017).

    [23] Liu Y Q, Li L S, Yin H C. Studies on terahertz electronic sources based on two-dimensional metallic metamaterials[J]. Journal of Microwaves, 34, 271-274(2018).

    [24] Cong L Q. Review of active terahertz metadevices[J]. Chinese Journal of Lasers, 48, 1914005(2021).

    [25] Qu D X, Grischkowsky D, Zhang W L. Terahertz transmission properties of thin, subwavelength metallic hole arrays[J]. Optics Letters, 29, 896-898(2004).

    [26] Pan T T, Cao W, Wang M. Optical properties of multi-hole periodic silver film array structure[J]. Acta Optica Sinica, 39, 0104001(2019).

    [27] Liu X, Wang Z L. Refractive index sensor based on trapezoidal dielectric grating and metallic film structure[J]. Laser & Optoelectronics Progress, 56, 072401(2019).

    [28] Huo H, Yan F P, Wang W et al. Terahertz high-sensitivity sensor design based on metamaterial[J]. Chinese Journal of Lasers, 47, 0814004(2020).

    Tools

    Get Citation

    Copy Citation Text

    Runyu Xue, Zhengyu Wang, Zhengling Wang. Waveguide Mechanism of Extraordinary Transmission Characteristics of Circular Hole Array on Metal Film[J]. Acta Optica Sinica, 2022, 42(4): 0431001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Thin Films

    Received: Jul. 7, 2021

    Accepted: Aug. 27, 2021

    Published Online: Jan. 29, 2022

    The Author Email: Wang Zhengling (zlwang@ujs.edu.cn)

    DOI:10.3788/AOS202242.0431001

    Topics