Acta Optica Sinica, Volume. 42, Issue 4, 0431001(2022)
Waveguide Mechanism of Extraordinary Transmission Characteristics of Circular Hole Array on Metal Film
[1] Bethe H A. Theory of diffraction by small holes[J]. Physical Review, 66, 163-182(1944).
[2] Ebbesen T W, Lezec H J, Ghaemi H F et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 391, 667-669(1998).
[3] Barnes W L, Murray W A, Dintinger J et al. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film[J]. Physical Review Letters, 92, 107401(2004).
[4] Koerkamp K J K, Enoch S et al. Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory[J]. Physical Review B, 72, 045421(2005).
[5] Degiron A, Ebbesen T W. The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures[J]. Journal of Optics A, 7, S90-S96(2005).
[6] Lezec H, Thio T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays[J]. Optics Express, 12, 3629-3651(2004).
[7] Liu H T, Lalanne P. Microscopic theory of the extraordinary optical transmission[J]. Nature, 452, 728-731(2008).
[8] Liu H T, Lalanne P. Light scattering by metallic surfaces with subwavelength patterns[J]. Physical Review B, 82, 115418(2010).
[9] Zhang X, Liu H T, Zhong Y. Microscopic analysis of surface Bloch modes on periodically perforated metallic surfaces and their relation to extraordinary optical transmission[J]. Physical Review B, 89, 195431(2014).
[10] Zhang X, Liu H T. Progress in extraordinary optical transmission[J]. Progress in Physics, 36, 118-127(2016).
[11] Lalanne P, Rodier J C, Hugonin J P. Surface plasmons of metallic surfaces perforated by nanohole arrays[J]. Journal of Optics A, 7, 422-426(2005).
[12] Martín-Moreno L. García-Vidal F J, Lezec H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Physical Review Letters, 86, 1114-1117(2001).
[13] Pendry J B, Martín-Moreno L. Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces[J]. Science, 305, 847-848(2004).
[14] Garcia-Vidal F J, Martín-Moreno L, Pendry J B. Surfaces with holes in them: new plasmonic metamaterials[J]. Journal of Optics A, 7, S97-S101(2005).
[15] García-Vidal F J, Lezec H J, Ebbesen T W et al. Multiple paths to enhance optical transmission through a single subwavelength slit[J]. Physical Review Letters, 90, 213901(2003).
[16] Yang F Z, Sambles J R. Resonant transmission of microwaves through a narrow metallic slit[J]. Physical Review Letters, 89, 063901(2002).
[17] Drude P. Electronic theory of metals[J]. Annalen der Physik, 1, 566-613(1900).
[18] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 6, 4370-4379(1972).
[19] Linden S, Enkrich C, Wegener M et al. Magnetic response of metamaterials at 100 terahertz[J]. Science, 306, 1351-1353(2004).
[20] Marcatili E A J, Schmeltzer R A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers[J]. The Bell System Technical Journal, 43, 1783-1809(1964).
[21] Wang Z L, Dai M, Yin J P. Atomic (or molecular) guiding using a blue-detuned doughnut mode in a hollow metallic waveguide[J]. Optics Express, 13, 8406-8423(2005).
[22] Yin Y N, Xu S P, Li T et al. 2D surface optical lattice formed by plasmon polaritons with application to nanometer-scale molecular deposition[J]. Scientific Reports, 7, 7788(2017).
[23] Liu Y Q, Li L S, Yin H C. Studies on terahertz electronic sources based on two-dimensional metallic metamaterials[J]. Journal of Microwaves, 34, 271-274(2018).
[24] Cong L Q. Review of active terahertz metadevices[J]. Chinese Journal of Lasers, 48, 1914005(2021).
[25] Qu D X, Grischkowsky D, Zhang W L. Terahertz transmission properties of thin, subwavelength metallic hole arrays[J]. Optics Letters, 29, 896-898(2004).
[26] Pan T T, Cao W, Wang M. Optical properties of multi-hole periodic silver film array structure[J]. Acta Optica Sinica, 39, 0104001(2019).
[27] Liu X, Wang Z L. Refractive index sensor based on trapezoidal dielectric grating and metallic film structure[J]. Laser & Optoelectronics Progress, 56, 072401(2019).
[28] Huo H, Yan F P, Wang W et al. Terahertz high-sensitivity sensor design based on metamaterial[J]. Chinese Journal of Lasers, 47, 0814004(2020).
Get Citation
Copy Citation Text
Runyu Xue, Zhengyu Wang, Zhengling Wang. Waveguide Mechanism of Extraordinary Transmission Characteristics of Circular Hole Array on Metal Film[J]. Acta Optica Sinica, 2022, 42(4): 0431001
Category: Thin Films
Received: Jul. 7, 2021
Accepted: Aug. 27, 2021
Published Online: Jan. 29, 2022
The Author Email: Wang Zhengling (zlwang@ujs.edu.cn)