Optics and Precision Engineering, Volume. 33, Issue 13, 2108(2025)

Three-stage low-light image enhancement based on illumination guidance

Yihang ZHANG and Han ZHONG*
Author Affiliations
  • College of Information and Network Safety, People's Public Security University of China, Beijing100038, China
  • show less
    Figures & Tables(13)
    Overall network architecture of IG-TSNet
    Network structure of pixel-wise enhancement and Fourier reconstruction stages
    Network structure of cross-attention fusion stage
    Comparison of image enhancement results in outdoor low-light environments
    Comparison of image enhancement results in indoor low-light environments
    Detail comparison of enhancement results by various algorithms on LOLv1 dataset
    Detail comparison of enhancement results by various algorithms on LOLv2-Real dataset
    Detail comparison of enhancement results by various algorithms on LOLv2-Syn dataset
    Comparison of enhancement results on three unpaired datasets
    • Table 1. Comparative experimental results of PSNR/SSIM for different algorithms on LOL datasets (v1 and v2)

      View table
      View in Article

      Table 1. Comparative experimental results of PSNR/SSIM for different algorithms on LOL datasets (v1 and v2)

      MethodComplexityLOLv1LOLv2-RealLOLv2-Syn
      NormalGT MeanNormalGT MeanNormalGT Mean
      Params/MFLOPs/GPSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIM
      RetinexNet90.84584.4716.7740.41918.9150.42716.0970.40118.3230.44717.1370.76219.0990.774
      KinD108.0234.9917.6500.77520.8600.80214.7400.64117.5440.66913.2900.57816.2590.591
      ZeroDCE110.0754.8314.8610.55921.8800.64016.0590.58019.7710.67117.7120.81521.4630.848
      3DLUT400.597.6714.3500.44521.3500.58517.5900.72120.1900.74518.0400.80022.1730.854
      DRBN415.4748.6116.2900.61719.5500.74620.2900.831--23.2200.927--
      MIRNet3531.76785.1024.1000.84526.5190.85620.0200.82027.1730.86521.9400.87625.9550.898
      RUAS360.0030.8316.4050.50018.6540.51815.3260.48819.0610.51013.7650.63816.5840.719
      LLFlow3717.42358.4021.1490.85424.9980.87117.4330.83125.4210.87724.8070.91927.9610.930
      EnlightenGAN12114.3561.0117.4800.65120.0030.69118.2300.617--16.5700.734--
      Restormer2126.13144.2522.3650.81626.6820.85318.6930.83426.1160.85321.4130.83025.4280.859
      LEDNet397.0735.9220.6270.82325.4700.84619.9380.82727.8140.87023.7090.91427.3670.928
      SNR-Aware134.0126.3524.6100.84226.7160.85121.4800.84927.2090.87124.1400.92727.7870.941
      PairLIE80.3320.8119.5100.73623.5260.75519.8850.77824.0250.80321.3510.85725.3260.873
      LLFormer3824.5522.5223.6490.81625.7580.82320.0560.79226.1970.81924.0380.90928.0060.927
      Retinexformer141.5315.8525.1530.84527.1400.85022.7940.84027.6940.85625.6700.93028.9920.939
      FourLLIE170.122.5722.5260.83126.0370.84922.1270.84327.5910.87124.7630.92428.1210.926
      PRNet421.938.0823.4520.83726.8600.85621.3140.84827.6610.88325.2740.93128.6570.943
      Ours1.8114.4923.2020.84926.9680.86722.2600.85627.8800.88225.2250.93628.9390.947
    • Table 2. Comparative experimental results of LPIPS for different algorithms on LOL datasets (v1 and v2)

      View table
      View in Article

      Table 2. Comparative experimental results of LPIPS for different algorithms on LOL datasets (v1 and v2)

      MethodLOLv1LOLv2-RealLOLv2-SynComplexity
      NormalGT MeanNormalGT MeanNormalGT MeanFLOPs/G
      RetinexNet0.4740.4700.5430.5190.2550.247587.47
      KinD0.2070.2010.3750.3680.4600.43534.99
      MIRNet0.1310.1280.1440.1420.0580.057758.10
      RUAS0.2700.2570.3090.2960.3640.3410.83
      LLFlow0.1190.1170.1760.1580.0670.063358.40
      EnlightenGAN0.3220.3170.3090.3010.2200.21361.01
      Restormer0.1410.1380.2310.2140.1440.139144.25
      SNR-Aware0.1510.1500.1560.1500.0570.05626.35
      LLFormer0.1750.1670.2110.2090.0660.06122.52
      LEDNet0.1180.1130.1200.1140.0610.05635.92
      Retinexformer0.1310.1290.1710.1660.0590.05615.85
      Ours0.1050.0990.1540.1410.0510.04714.49
    • Table 3. Comparative experimental results of BRISQUE/NIQE for different algorithms on unpaired datasets (DICM/MEF/NPE)

      View table
      View in Article

      Table 3. Comparative experimental results of BRISQUE/NIQE for different algorithms on unpaired datasets (DICM/MEF/NPE)

      MethodDICMMEFNPE
      BRISNIQEBRISNIQEBRISNIQE
      KinD48.725.1549.945.4736.854.98
      ZeroDCE27.564.5817.324.9320.724.53
      MIRNet28.863.9828.633.9825.564.33
      RUAS38.755.2123.683.8347.855.53
      LLFlow26.364.0630.274.7028.864.67
      SNR-Aware37.354.7131.284.1826.654.32
      PairLIE33.314.0327.534.0628.274.18
      Retinexformer14.103.8311.783.6718.183.94
      Ours25.673.7920.514.0918.804.02
    • Table 4. Quantitative analysis result of ablation experiments

      View table
      View in Article

      Table 4. Quantitative analysis result of ablation experiments

      GroupModelLOL-v1LOL-v2-RealLOL-v2-Syn
      一阶段二阶段三阶段PSNRSSIMLPIPSPSNRSSIMLPIPSPSNRSSIMLPIPS
      118.1050.7360.26718.3890.7720.24919.8520.8730.129
      218.6560.7740.25221.8950.8370.18321.4860.8940.164
      322.3700.8260.14521.4300.8400.18023.7100.9170.107
      422.2690.8240.14021.3300.8420.14623.2490.9150.090
      523.2020.8490.10522.2600.8560.15425.2250.9360.051
    Tools

    Get Citation

    Copy Citation Text

    Yihang ZHANG, Han ZHONG. Three-stage low-light image enhancement based on illumination guidance[J]. Optics and Precision Engineering, 2025, 33(13): 2108

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 24, 2025

    Accepted: --

    Published Online: Aug. 28, 2025

    The Author Email:

    DOI:10.37188/OPE.20253313.2108

    Topics