Laser & Optoelectronics Progress, Volume. 55, Issue 12, 121505(2018)

A Face Recognition Algorithm Based on Angular Distance Loss Function and Convolutional Neural Network

Xin Long, Hansong Su, Gaohua Liu*, and Zhenyu Chen
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(15)
    Comparison of test protocol of face recognition. (a) Closed-set face recognition; (b) open-set face recognition
    Comparison of softmax loss function. (a) Traditional softmax loss function; (b) improved softmax loss function
    Schematic of the proposed angular distance loss function
    Structure of densely connected networks
    Comparison of activation functions. (a) ReLU; (b) PReLU
    Integral structure of network
    Face recognition accuracy versus hyperparameter ω
    Test accuracy of LFW dataset for network structures with different layer numbers and different loss functions
    Test accuracy of LFW dataset for network structures with different layer numbers and widths
    Proposed implementation process
    • Table 1. Comparison of classification boundaries of loss functions

      View table

      Table 1. Comparison of classification boundaries of loss functions

      Loss functionDecision boundary
      Original softmax loss(W1-W2)x+b1-b2=0
      Modified softmax lossx(cosθ1-cosθ2)=0
      Angular distance lossx{cosθ1-cos[(1-ω)θ2]}=0 for class 1
      x{cos[(1-ω)θ1]-cosθ2}=0 for class 2
    • Table 2. Specific configuration of the dense connection structure

      View table

      Table 2. Specific configuration of the dense connection structure

      LayerOutput sizeDenseFace-42DenseFace-54DenseFace-78DenseFace-122
      Dense block 156×561×13×3×41×13×3×61×13×3×61×13×3×6
      Dense block 228×281×13×3×51×13×3×61×13×3×121×13×3×12
      Dense block 314×141×13×3×51×13×3×61×13×3×121×13×3×24
      Dense block 47×71×13×3×41×13×3×61×13×3×61×13×3×16
    • Table 3. Comparison of parameter quantities of several convolutional neural network models

      View table

      Table 3. Comparison of parameter quantities of several convolutional neural network models

      Net structureInput size /pixelDepth /layerParameter /106
      LeNet32×32×150.062
      AlexNet227×227×3862.4
      VGGNet224×224×316138.4
      GoogleNet224×224×3225.3
      ResNet224×224×315261.3
      DenseFace (width: 32)112×112×3426.7
      547.3
      788.9
      12212.8
      DenseFace (width: 16)112×112×3425.78
      545.9
      786.37
      1227.4
    • Table 4. Test accuracy of different loss functions or face recognition algorithms

      View table

      Table 4. Test accuracy of different loss functions or face recognition algorithms

      MethodDatasetData amount /106Accuracy /%
      DeepFaceLFW497.33
      FaceNetLFW20099.67
      Deep FRLFW2.698.85
      DeepID2+LFW0.398.74
      Center FaceLFW0.799.31
      Softmax lossCAISA-WebFace0.4997.78
      Triplet lossCAISA-WebFace0.4998.65
      Center lossCAISA-WebFace0.4999.02
      L-softmax lossCAISA-WebFace0.4999.15
      Angular distance lossCAISA-WebFace0.4999.45
    • Table 5. Test accuracy of different loss functions or face recognition algorithms on the MegaFace dataset

      View table

      Table 5. Test accuracy of different loss functions or face recognition algorithms on the MegaFace dataset

      MethodTest protocolAccuracy /%
      Face identificationFace verification
      FaceNetlarge70.49686.473
      Deepsenselarge74.79887.764
      Deepsensesmall70.98382.851
      Softmax losssmall54.62865.732
      Triplet losssmall64.69878.030
      Center losssmall65.33480.106
      L-softmax losssmall67.03580.185
      Angular softmax losssmall72.53485.348
    Tools

    Get Citation

    Copy Citation Text

    Xin Long, Hansong Su, Gaohua Liu, Zhenyu Chen. A Face Recognition Algorithm Based on Angular Distance Loss Function and Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2018, 55(12): 121505

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: May. 25, 2018

    Accepted: Jul. 12, 2018

    Published Online: Aug. 1, 2019

    The Author Email: Gaohua Liu (suppig@126.com)

    DOI:10.3788/LOP55.121505

    Topics