Chinese Journal of Lasers, Volume. 40, Issue 5, 517001(2013)
Frequency Noise Suppression of a Dye Laser Based on Intracavity Electro-Optic Modulator
[1] [1] B. C. Young, F. C. Cruz, W. M. Itano et al.. Visible lasers with subhertz linewidths[J]. Phys. Rev. Lett., 1999, 82(19): 3799~3802
[2] [2] J. Hough, D. Hils, M. D. Rayman et al.. Dye-laser frequency stabilization using optical resonators[J]. Appl. Phys. B, 1984, 33(3): 179~185
[3] [3] J. Heimcke, S. A. Lee, J. L. Hall. Dye laser spectrometer for ultrahigh spectral resolution: design and performance[J]. Appl. Opt., 1982, 21(9): 1686~1694
[4] [4] J. Ye, L. S. Ma, J. L. Hall. Molecular iodine clock[J]. Phys. Rev. Lett., 2001, 87(27): 270801
[5] [5] A. Arie, S. Schiller, E. K. Gustafson et al.. Absolute frequency stabilization of diode-pumped NdYAG lasers to hyperfine transitions in molecular iodine[J]. Opt. Lett., 1992, 17(17): 1204~1206
[7] [7] L. S. Chen, W. Y. Cheng, J. Ye. Hyperfine interactions and perturbation effects in the B0+u(3Πu) state of 127I2[J]. J. Opt. Soc. Am. B, 2004, 21(4): 820~832
[8] [8] J. P. Zhai, I. L. Li, S. C. Ruan et al.. Controlling the alignment of neutral iodine molecules in the elliptical channels of AlPO4-11 crystals[J]. Appl. Phys. Lett., 2008, 92(4): 043117
[9] [9] W. H. Guo, D. D. Wang, J. M. Hu et al.. Raman spectroscopy of iodine molecules trapped in zeolite crystals[J]. Appl. Phys. Lett., 2011, 98(4): 043105
[10] [10] J. M. Hu, D. D. Wang, W. H. Guo et al.. Reversible control of the orientation of iodine molecules inside the AlPO4-11 crystals[J]. J. Phys. Chem., 2012, 116(7): 4423~4430
[11] [11] D. J. Mann, M. D. Halls. Water alignment and proton conduction inside carbon nanotubes[J]. Phys. Rev. Lett., 2003, 90(19): 195503
[12] [12] R. W. P. Drever, J. L. Hall, F. V. Kowalski et al.. Laser phase and frequency stabilization using an optical resonator[J]. Appl. Phys. B, 1983, 31(2): 97~105
[13] [13] D. D. Hudson, K. W. Holman, R. J. Jones et al.. Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator[J]. Opt. Lett., 2005, 30(21): 2948~2950
[15] [15] M. Hyodo, K. S. Abedin, N. Onodera. Generation of millimeter-wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electro-optic crystal[J]. Opt. Commun., 1999, 171(1): 159~169
[16] [16] F. Liu, C. Wang, L. F. Li et al.. Long-term and wideband laser intensity stabilization with an electro-optic amplitude modulator[J]. Opt. Laser Technol., 2013, 45: 775~781
[17] [17] A. Yariv. Quantumn Electronics[M]. New York: Wiley, 1989
[18] [18] Liufeng Li, Fang Liu, Chun Wang et al.. Measurement and control of residual amplitude modulation in optical phase modulation[J]. Rev. Sci. Instrum., 2012, 83(4): 043111
[20] [20] G. D. Domenico, S. Schilt, P. Thomann. Simple approach to the relation between laser frequency noise and laser line shape[J]. Appl. Opt., 2010, 49(25): 4801~4807
Get Citation
Copy Citation Text
Liu Fang, Wang Chun, Li Liufeng, Chen Lisheng. Frequency Noise Suppression of a Dye Laser Based on Intracavity Electro-Optic Modulator[J]. Chinese Journal of Lasers, 2013, 40(5): 517001
Category:
Received: Dec. 26, 2012
Accepted: --
Published Online: May. 8, 2013
The Author Email: Fang Liu (liufang@mail.ustc.edu.cn)