Laser & Optoelectronics Progress, Volume. 61, Issue 18, 1815005(2024)

Airborne Laser Point-Cloud Filtering in Complex Mountainous Terrain Utilizing Deep Global Information Fusion

Jierui Cui1,3, Yunwei Pu1,2、*, Yan Xia3, and Yichen Liu3
Author Affiliations
  • 1Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • 2Computing Center, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
  • 3Yunnan Water Conservancy and Hydropower Survey and Design Institute, Kunming 650021, Yunnan, China
  • show less
    Figures & Tables(12)
    Network structure
    Local cross feature fusion module
    Normal vector difference
    Multidimensional feature encoding unit
    Global context aggregation module
    YNM-dataset
    OpenGF dataset
    Filtering results of region 3 in the OpenGF dataset. (a) CSF; (b) PMF; (c) PTD; (d) RandLA-Net; (e) SCF-Net; (f) BAAF-Net; (g) MGINet; (h) GT
    Filtering results of YNM-dataset. (a) CSF; (b) PMF; (c) PTD; (d) RandLA-Net; (e) SCF-Net; (f) BAAF-Net; (g) MGINet; (h) GT
    • Table 1. Parameter settings for different filtering methods

      View table

      Table 1. Parameter settings for different filtering methods

      DatasetParameter
      PMFCSFPTD
      OpenGF datasetWS:1.0,MW:30CR:0.5,MI:800MB:60,IA:30,IB:0.5
      YNM-datasetWS:0.9,MW:30CR:0.5,MI:800MB:40,IA:50,IB:0.5
    • Table 2. OA, MIoU, and RMSE of different models in two datasets

      View table

      Table 2. OA, MIoU, and RMSE of different models in two datasets

      MethodOpenGF datasetYNM-dataset
      OAMIoURMSETime /minOAMIoURMSETime /min
      CSF89.7884.482.2110.286.5182.613.1145.3
      PTD98.8993.321.841.892.3089.652.587.3
      PMF85.5580.673.930.676.6578.584.653.6
      RandLA-Net97.0292.291.671.294.3291.471.524.5
      SCF-Net96.6792.491.981.393.2690.942.165.6
      BAAF-Net98.3793.481.251.196.7093.080.975.3
      MGINet98.4294.620.891.696.8293.290.856.1
    • Table 3. Filtering accuracy of each module of MGINet

      View table

      Table 3. Filtering accuracy of each module of MGINet

      MGINet modelOpenGF datasetYNM-dataset
      OAMIoURMSEOAMIoURMSE
      None93.7891.101.2392.1589.351.87
      Nor-Dist95.3592.561.0694.4191.791.25
      Cross-feature94.9891.541.0593.0190.261.72
      GCAM96.3393.460.9094.8292.131.06
      Nor-Dist+Cross-feature96.0293.580.9894.8992.081.18
      Nor-Dist+Cross-feature+ GCAM98.4294.620.8996.8293.290.85
    Tools

    Get Citation

    Copy Citation Text

    Jierui Cui, Yunwei Pu, Yan Xia, Yichen Liu. Airborne Laser Point-Cloud Filtering in Complex Mountainous Terrain Utilizing Deep Global Information Fusion[J]. Laser & Optoelectronics Progress, 2024, 61(18): 1815005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Feb. 5, 2024

    Accepted: Mar. 7, 2024

    Published Online: Sep. 14, 2024

    The Author Email: Yunwei Pu (puyunwei@126.com)

    DOI:10.3788/LOP240669

    CSTR:32186.14.LOP240669

    Topics