Journal of Infrared and Millimeter Waves, Volume. 42, Issue 6, 906(2023)
Depth estimation of thermal infrared images based on self-supervised learning
[1] Huang J, Wang C, Liu Y et al. The progress of monocular depth estimation technology[J]. Journal of Image and Graphics, 24, 2081-2097(2019).
[2] Jia D, Zhu N D, Yang N H et al. Image matching methods[J]. Journal of Image and Graphics, 24, 677-699(2019).
[3] Dong X, Garratt A M A, Anavatti G S et al. Towards Real-Time Monocular Depth Estimation for Robotics: A Survey[J]. IEEE Transactions on Intelligent Transportation Systems, 23, 16940-16961(2022).
[4] Liu Y, Jiang J, Sun J et al. A survey of depth estimation based on computer vision[C], 135-141.
[5] Ming Y, Meng X, Fan C et al. Deep learning for monocular depth estimation: A review[J]. Neurocomputing, 438, 14-33(2021).
[6] Masoumian A, Rashwan H A, Cristiano J et al. Monocular Depth Estimation Using Deep Learning: A Review[J]. Sensors, 22, 5353(2022).
[7] Qi X, Liao R, Liu Z et al. Geonet: Geometric neural network for joint depth and surface normal estimation[C], 283-291.
[8] Ummenhofer B, Zhou H, Uhrig J et al. Demon: Depth and motion network for learning monocular stereo[C], 5038-5047.
[9] Luo Y, Ren J, Lin M et al. Single view stereo matching[C], 155-163.
[10] Xie J, Girshick R, Farhadi A. Deep3d: Fully automatic 2d-to-3d video conversion with deep convolutional neural networks[C], 842-857.
[11] Zhan H, Garg R, Weerasekera C S et al. Unsupervised learning of monocular depth estimation and visual odometry with deep feature reconstruction[C], 340-349.
[12] Ding M, Jiang X Y. Scene Depth Estimation Based on Monocular Vision in Advanced Driving Assistance System[J]. Acta Optica Sinica, 40, 1715001-9(2020).
[13] Garg R, Bg V K, Carneiro G et al. Unsupervised cnn for single view depth estimation: Geometry to the rescue[C], 740-756.
[14] Godard C, Mac Aodha O, Brostow G J. Unsupervised monocular depth estimation with left-right consistency[C], 270-279.
[15] Tosi F, Aleotti F, Poggi M et al. Learning monocular depth estimation infusing traditional stereo knowledge[C], 9799-9809.
[16] Zhou T, Brown M, Snavely N et al. Unsupervised learning of depth and ego-motion from video[C], 1851-1858.
[17] Lai H Y, Tsai Y H, Chiu W C. Bridging stereo matching and optical flow via spatiotemporal correspondence[C], 1890-1899.
[18] Zou Y, Luo Z, Huang J B. Df-net: Unsupervised joint learning of depth and flow using cross-task consistency[C], 36-53.
[19] Godard C, Mac Aodha O, Firman M et al. Digging into self-supervised monocular depth estimation[C], 3828-3838.
[20] Li X G, Cao M T, Li B et al. GPNet: Lightweight infrared image target detection algorithm[J]. Journal of Infrared and Millimeter Waves, 41, 1092-1101(2022).
[22] He Y, Deng B, Wang H et al. Infrared machine vision and infrared thermography with deep learning: A review[J]. Infrared physics & technology, 116, 2021.
[23] Li X, Ding M, Wei D H et al. Depth estimation method based on monocular infrared image in VDAS[J]. Systems Engineering and Electronics, 43, 1210-1217(2021).
[24] Wang Z, Bovik A C, Sheikh H R et al. Image Quality Assessment: From Error Visibility to Structural Similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).
[25] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C], 3431-3440(2015).
[26] Zhou Z, Rahman Siddiquee M M, Tajbakhsh N et al. Unet++: A nested u-net architecture for medical image segmentation[C], 3-11(2018).
[27] Wang J, Sun K, Cheng T et al. Deep high-resolution representation learning for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 43, 3349-3364(2020).
[28] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C], 7132-7141.
[29] Wang Q, Wu B, Zhu P et al. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks[C], 11534-11542.
[30] Lyu X, Liu L, Wang M et al. HR-depth: High resolution self-supervised monocular depth estimation[C], 35, 2294-2301.
Get Citation
Copy Citation Text
Meng DING, Song GUAN, Shuai LI, Kuai-Kuai YU, Yi-Ming XU. Depth estimation of thermal infrared images based on self-supervised learning[J]. Journal of Infrared and Millimeter Waves, 2023, 42(6): 906
Category: Research Articles
Received: Dec. 13, 2022
Accepted: --
Published Online: Dec. 26, 2023
The Author Email: Meng DING (nuaa_dm@nuaa.edu.cn)