Journal of the Chinese Ceramic Society, Volume. 52, Issue 12, 3772(2024)
Negative Thermal Expansion Oxide Sm0.85Zn0.15Mno3 Composite of La0.6Sr0.4CoO3-δ Materials as Intermediate Temperature Solid Oxide Fuel Cells High-Performance Air Electrode
[1] [1] YUN S N, ZHANG Y W, XU Q, et al. Recent advance in new-generation integrated devices for energy harvesting and storage[J]. Nano Energy, 2019, 60: 600-619.
[2] [2] STAMBOULI A B, TRAVERSA E. Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy[J]. Renew Sustain Energy Rev, 2002, 6(5): 433-455.
[4] [4] RU Y L, SANG J K, XIA C R, et al. Durability of direct internal reforming of methanol as fuel for solid oxide fuel cell with double-sided cathodes[J]. Int J Hydrog Energy, 2020, 45(11): 7069-7076.
[5] [5] NDUBUISI A, ABOUALI S, SINGH K, et al. Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodes[J]. J Mater Chem A, 2022, 10(5): 2196-2227.
[8] [8] MINH N. Solid oxide fuel cell technology? features and applications[J]. Solid State Ion, 2004, 174(1/4): 271-277.
[9] [9] TAHIR N N M, BAHARUDDIN N A, SAMAT A A, et al. A review on cathode materials for conventional and proton-conducting solid oxide fuel cells[J]. J Alloys Compd, 2022, 894: 162458.
[10] [10] FAN L D, ZHU B, SU P C, et al. Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities[J]. Nano Energy, 2017, 45(Part 1): 148-176.
[11] [11] XIE M Y, CAI C K, LIU X J, et al. Improved durability of high-performance intermediate-temperature solid oxide fuel cells with a Ba-doped La0.6Sr0.4Co0.2Fe0.8O3- cathode[J]. ACS Appl Mater Interfaces, 2022: 33052-33064.
[12] [12] YANG J, CHEN L, CAI D M, et al. Study on the strontium segregation behavior of lanthanum strontium cobalt ferrite electrode under compression[J]. Int J Hydrog Energy, 2021, 46(15): 9730-9740.
[13] [13] DEVELOS-BAGARINAO K, ISHIYAMA T, KISHIMOTO H, et al. Nanoengineering of cathode layers for solid oxide fuel cells to achieve superior power densities[J]. Nat Commun, 2021, 12(1): 3979.
[14] [14] SOLOVYEV A A, KUTERBEKOV K A, NURKENOV S A, et al. Anode-supported solid oxide fuel cells with multilayer LSC/CGO/LSC cathode[J]. Fuel Cells, 2021, 21(4): 408-412.
[15] [15] ZENG R, HUANG Y H. Enhancing surface activity of La0.6Sr0.4CoO3- cathode by a simple infiltration process[J]. Int J Hydrog Energy, 2017, 42(10): 7220-7225.
[16] [16] MATSUI T, KOMOTO M, MUROYAMA H, et al. Degradation factors in (La, Sr)(Co, Fe)O3- cathode/Sm2O3-CeO2 interlayer/Y2O3-ZrO2 electrolyte system during operation of solid oxide fuel cells[J]. J Power Sources, 2016, 312: 80-85.
[18] [18] ZHANG Y, CHEN B, GUAN D Q, et al. Thermal-expansion offset for high-performance fuel cell cathodes[J]. Nature, 2021, 591(7849): 246-251.
[19] [19] ATTFIELD J P. Mechanisms and materials for NTE[J]. Front Chem, 2018, 6: 371.
[20] [20] LI Q, LIN K, LIU Z N, et al. Chemical diversity for tailoring negative thermal expansion[J]. Chem Rev, 2022, 122(9): 8438-8486.
[21] [21] LU F, YANG M J, SHI Y J, et al. Application of a negative thermal expansion oxide in SOFC cathode[J]. Ceram Int, 2021, 47(1): 1095-1100.
[22] [22] WANG H R, LEI Z, JIANG W W, et al. A novel composite oxygen electrode: PrBaCo2O5+ combined with negative thermal expansion oxide applied to reversible solid oxide cells[J]. Int J Hydrog Energy, 2022, 47(90): 38327-38333.
[23] [23] LIU K, LU F, JIA X S, et al. A high performance thermal expansion offset composite cathode for IT-SOFCs[J]. J Mater Chem A, 2022, 10(45): 24410-24421.
[24] [24] WANG H, LEI Z, JING J, et al. Evaluation of NdBaCo2O5+ oxygen electrode combined with negative expansion material for reversible solid oxide cells [J]. J Eur Ceram Soc, 2022, 42(10): 4259-4265.
[25] [25] TANG X B, JIAO Y J, YANG M J, et al. Anomalous thermal expansion properties in perovskite Sm0.85Zn0.15MnO3[J]. Solid State Ion, 2020, 344: 115139.
[26] [26] HUANG P N, HORKY A, PETRIC A. Interfacial reaction between nickel oxide and lanthanum gallate during sintering and its effect on conductivity[J]. J Am Ceram Soc, 1999, 82(9): 2402-2406.
[27] [27] YANG J, ZOU Z W, ZHANG H, et al. Study on the long-term discharge and redox stability of symmetric flat-tube solid oxide fuel cells[J]. Int J Hydrog Energy, 2021, 46(15): 9741-9748.
Get Citation
Copy Citation Text
SI Yu, GAO Mingze, LI Shiqing, GUAN Wanbing, YANG Jun, WANG Jianxin. Negative Thermal Expansion Oxide Sm0.85Zn0.15Mno3 Composite of La0.6Sr0.4CoO3-δ Materials as Intermediate Temperature Solid Oxide Fuel Cells High-Performance Air Electrode[J]. Journal of the Chinese Ceramic Society, 2024, 52(12): 3772
Category:
Received: Apr. 3, 2024
Accepted: Jan. 2, 2025
Published Online: Jan. 2, 2025
The Author Email: