OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 21, Issue 2, 36(2023)
Feedback Cooling of a Magnetic-Gravity Levitated Mechanical Resonator
[1] [1] Kippenberg T J, Vahala K J. Cavity optomechanics: Back-action at the mesoscale[J]. Science, 2008, 321(5893): 1172-1176.
[2] [2] Aspelmeyer M, Gr?blacher S, Hammerer K, et al. Quantum optomechanics—throwing a glance[J]. JOSA B, 2010, 27(6): A189-A197.
[3] [3] O’Connell A D, Hofheinz M, Ansmann M, et al. Quantum ground state and single-phonon control of a mechanical resonator[J]. Nature, 2010, 464(7289): 697-703.
[4] [4] Gieseler J, Deutsch B, Quidant R, et al. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle[J]. Physical review letters, 2012, 109(10): 103603.
[5] [5] Barker P F, Shneider M N. Cavity cooling of an optically trapped nanoparticle[J]. Physical Review A, 2010, 81(2): 023826.
[6] [6] Deli? U, Reisenbauer M, Dare K, et al. Cooling of a levitated nanoparticle to the motional quantum ground state[J]. Science, 2020, 367(6480): 892-895.
[7] [7] Bowman R W, Padgett M J. Optical trapping and binding[J]. Reports on Progress in Physics, 2013, 76(2): 026401.
[8] [8] Maragò O M, Jones P H, Gucciardi P G, et al. Optical trapping and manipulation of nanostructures[J]. Nature Nanotechnology, 2013, 8(11): 807-819.
[9] [9] Yang Y, Ren Y, Chen M, et al. Optical trapping with structured light: A review[J]. Advanced Photonics, 2021, 3(3): 034001.
[10] [10] Dania L, Bykov D S, Knoll M, et al. Optical and electrical feedback cooling of a silica nanoparticle levitated in a Paul trap[J]. Physical Review Research, 2021, 3(1): 013018.
[11] [11] Zheng D, Leng Y, Kong X, et al. Room temperature test of the continuous spontaneous localization model using a levitated micro-oscillator[J]. Physical Review Research, 2020, 2(1): 013057.
[12] [12] Vinante A, Pontin A, Rashid M, et al. Testing collapse models with levitated nanoparticles: Detection challenge[J]. Physical Review A, 2019, 100(1): 012119.
[13] [13] Gieseler J, Novotny L, Quidant R. Thermal nonlinearities in a nanomechanical oscillator[J]. Nature Physics, 2013, 9(12): 806-810.
[14] [14] Ranjit G, Atherton D P, Stutz J H, et al. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum[J]. Physical Review A, 2015, 91(5): 051805.
[15] [15] Romero-Isart O, Juan M L, Quidant R, et al. Toward quantum superposition of living organisms[J]. New Journal of Physics, 2010, 12(3): 033015.
[16] [16] Chang D E, Regal C A, Papp S B, et al. Cavity opto-mechanics using an optically levitated nanosphere[J]. Proceedings of the National Academy of Sciences, 2010, 107(3): 1005-1010.
[17] [17] Yin Z, Li T, Zhang X, et al. Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling[J]. Physical Review A, 2013, 88(3): 033614.
[18] [18] Albrecht A, Retzker A, Plenio M B. Testing quantum gravity by nanodiamond interferometry with nitrogen-vacancy centers[J]. Physical Review A, 2014, 90(3): 033834.
[19] [19] Abbott B, Abbott R, Adhikari R, et al. Analysis of LIGO data for gravitational waves from binary neutron stars[J]. Physical Review D, 2004, 69(12): 122001.
[20] [20] Weld D M, Kapitulnik A. Feedback control and characterization of a microcantilever using optical radiation pressure[J]. Applied Physics Letters, 2006, 89(16): 164102.
[21] [21] Poggio M, Degen C L, Mamin H J, et al. Feedback cooling of a cantilever’s fundamental mode below 5 mK[J]. Physical Review Letters, 2007, 99(1): 017201.
Get Citation
Copy Citation Text
WANG Zi-zhe, LI Yuan, YAN Wei, YU Wen-feng. Feedback Cooling of a Magnetic-Gravity Levitated Mechanical Resonator[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2023, 21(2): 36
Category:
Received: Aug. 17, 2022
Accepted: --
Published Online: Apr. 15, 2023
The Author Email:
CSTR:32186.14.