Journal of Innovative Optical Health Sciences, Volume. 18, Issue 5, 2550015(2025)

Photoacoustic detecting of brain lymphatic dysfunction in inflammatory models

Meng Wang, Dan Wang, Zhigang Wang, Wenbin Shi, and Zhiyang Wang*
References(36)

[1] N. L. Trevaskis, L. M. Kaminskas, C. J. H. Porter. From sewer to saviour — targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Discov., 14, 781-803(2015).

[2] D. Li, S. Liu, T. Yu, Z. Liu, S. Sun, D. Bragin, A. Shirokov, N. Navolokin, O. Bragina, Z. Hu, J. Kurths, I. Fedosov, I. Blokhina, A. Dubrovski, A. Khorovodov, A. Terskov, M. Tzoy, O. Semyachkina-Glushkovskaya, D. Zhu. Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage. Nat. Commun., 14, 6104(2023).

[3] A. F. M. Salvador, N. Abduljawad, J. Kipnis. Meningeal lymphatics in central nervous system diseases. Annu. Rev. Neurosci., 47, 323-344(2024).

[4] S. Da Mesquita, Z. Papadopoulos, T. Dykstra, L. Brase, F. G. Farias, M. Wall, H. Jiang, C. D. Kodira, K. A. de Lima, J. Herz, A. Louveau, D. H. Goldman, A. F. Salvador, S. Onengut-Gumuscu, E. Farber, N. Dabhi, T. Kennedy, M. G. Milam, W. Baker, I. Smirnov, S. S. Rich, B. A. Benitez, C. M. Karch, R. J. Perrin, M. Farlow, J. P. Chhatwal, D. M. Holtzman, C. Cruchaga, O. Harari, J. Kipnis. Meningeal lymphatics modulate microglial activation and immunotherapy in Alzheimer’s disease. Nature, 593, 255-260(2021).

[5] M. Wang, C. Yan, X. Li, T. Yang, S. Wu, Q. Liu, Q. Luo, F. Zhou. Non-invasive modulation of meningeal lymphatics ameliorates ageing and Alzheimer’s disease-associated pathology and cognition in mice. Nat. Commun., 15, 1453(2024).

[6] F. Di Virgilio, D. Dal Ben, A. C. Sarti, A. L. Giuliani, S. Falzoni. The P2X7 receptor in infection and inflammation. Immunity, 47, 15-31(2017).

[7] F. Calzaferri, C. Ruizirri”nilianiarti, A. L. GiulianiPascual, I. M I. alLópez, M. F. Canoi”nilianiaManeu, C. de los Ríos, L. Gandía, A. G. García. The purinergic P2X7 receptor as a potential drug target to combat neuroinflammation in neurodegenerative diseases. Med. Res. Rev., 40, 2427-2465(2020).

[8] M. Tewari, P. Seth. Emerging role of P2X7 receptors in CNS health and disease. Ageing Res. Rev., 24, 328-342(2015).

[9] X.-H. Wang, X. Xie, X.-G. Luo, H. Shang, Z.-Y. He. Inhibiting purinergic P2X7 receptors with the antagonist brilliant blue G is neuroprotective in an intranigral lipopolysaccharide animal model of Parkinson’s disease. Mol. Med. Rep., 15, 768-776(2017).

[10] S. Merighi, T. E. Poloni, A. Terrazzan, E. Moretti, S. Gessi, D. Ferrari. Alzheimer and purinergic signaling: Just a matter of inflammation?. Cells, 10, 1267(2021).

[11] Y.-H. Chen, R.-R. Lin, Q.-Q. Tao. The role of P2X7R in neuroinflammation and implications in Alzheimer’s disease. Life Sci., 271, 119187(2021).

[12] H. Dong, X. Dai, Y. Zhou, C. Shi, P. Bhuiyan, Z. Sun, N. Li, W. Jin. Enhanced meningeal lymphatic drainage ameliorates lipopolysaccharide-induced brain injury in aged mice. J. Neuroinflammation, 21, 36(2024).

[13] L. E. B. Savio, M. G. J. Andrade, P. de Andrade Mello, P. T. Santana, A. C. A. Moreira-Souza, J. Kolling, A. Longoni, L. Feldbrügge, Y. Wu, A. T. S. Wyse, S. C. Robson, R. Coutinho-Silva. P2X7 receptor signaling contributes to sepsis-associated brain dysfunction. Mol. Neurobiol., 54, 6459-6470(2016).

[14] Z. Fan, K. Wang, X. Zhao, X. Sun. P2X7 receptor: A receptor closely linked with sepsis-associated encephalopathy. Open Life Sci., 19, 20220775(2024).

[15] M. Sidoryk-Wegrzynowicz, L. Struzynska. Astroglial and microglial purinergic P2X7 receptor as a major contributor to neuroinflammation during the course of multiple sclerosis. Int. J. Mol. Sci., 22, 8404(2021).

[16] B. Sridharan, H. G. Lim. Advances in photoacoustic imaging aided by nano contrast agents: Special focus on role of lymphatic system imaging for cancer theranostics. J. Nanobiotechnol., 21, 437(2023).

[17] Z. Wang, F. Yang, W. Shi, W. Xie, Z. Zhang, S. Yang. Monitoring the perivascular cerebrospinal fluid dynamics of the glymphatic pathway using co-localized photoacoustic microscopy. Opt. Lett., 48, 2265-2268(2023).

[18] Y. Suzuki, H. Kajita, N. Konishi, A. Oh, M. Urano, S. Watanabe, Y. Asao, N. Imanishi, T. Tsuji, M. Jinzaki, S. Aiso, K. Kishi. Subcutaneous lymphatic vessels in the lower extremities: Comparison between photoacoustic lymphangiography and near-infrared fluorescence lymphangiography. Radiology, 295, 469-474(2020).

[19] F. Yang, Z. Wang, W. Shi, M. Wang, R. Ma, W. Zhang, X. Li, E. Wang, W. Xie, Z. Zhang, Q. Shen, F. Zhou, S. Yang. Advancing insights into in vivo meningeal lymphatic vessels with stereoscopic wide-field photoacoustic microscopy. Light Sci. Appl., 13, 96(2024).

[20] Z. Wang, F. Yang, W. Zhang, K. Xiong, S. Yang. Towards in vivo photoacoustic human imaging: Shining a new light on clinical diagnostics. Fundam. Res., 4, 1314-1330(2024).

[21] X. Li, Z. Zhang, H. Shi, F. Zhou. Characterization of cerebrovascular changes in Alzheimer’s disease mice by photoacoustic imaging. J. Innov. Opt. Health Sci., 17, 2450007(2024).

[22] W. Zhang, X. Luo, F. Yang, Z. Tong, J. Liang, B. Yuan, S. Yang, Z. Wang. Photoacoustic (532 and 1064 nm) and ultrasonic coscanning microscopy for in vivo imaging on small animals: A productized strategy. J. Biophotonics, 16, e202300007(2023).

[23] X. Li, L. Qi, D. Yang, S. Hao, F. Zhang, X. Zhu, Y. Sun, C. Chen, J. Ye, J. Yang, L. Zhao, D. M. Altmann, S. Cao, H. Wang, B. Wei. Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. Nat. Neurosci., 25, 577-587(2022).

[24] X. Hu, Q. Deng, L. Ma, Q. Li, Y. Chen, Y. Liao, F. Zhou, C. Zhang, L. Shao, J. Feng, T. He, W. Ning, Y. Kong, Y. Huo, A. He, B. Liu, J. Zhang, R. Adams, Y. He, F. Tang, X. Bian, J. Luo. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res., 30, 229-243(2020).

[25] B.-L. Sun, L.-H. Wang, T. Yang, J.-Y. Sun, L.-L. Mao, M.-F. Yang, H. Yuan, R. A. Colvin, X.-Y. Yang. Lymphatic drainage system of the brain: A novel target for intervention of neurological diseases. Prog. Neurobiol., 164, 118-143(2018).

[26] J. Liao, Z. An, Q. Cheng, Y. Liu, Y. Chen, Z. Su, A. M. Usman, Z. Tang, G. Xiao. The glymphatic system: A new insight into the understanding of neurological diseases. Brain-X, 2, e70011(2024).

[27] S. Da Mesquita, A. Louveau, A. Vaccari, I. Smirnov, R. C. Cornelison, K. M. Kingsmore, C. Contarino, S. Onengut-Gumuscu, E. Farber, D. Raper, K. E. Viar, R. D. Powell, W. Baker, N. Dabhi, R. Bai, R. Cao, S. Hu, S. S. Rich, J. M. Munson, M. B. Lopes, C. C. Overall, S. T. Acton, J. Kipnis. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature, 560, 185-191(2018).

[28] M. K. Rasmussen, H. Mestre, M. Nedergaard. The glymphatic pathway in neurological disorders. Lancet Neurol., 17, 1016-1024(2018).

[29] J. H. Ahn, H. Cho, J. H. Kim, S. H. Kim, J. S. Ham, I. Park, S. H. Suh, S. P. Hong, J. H. Song, Y. K. Hong, Y. Jeong, S. H. Park, G. Y. Koh. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature, 572, 62-66(2019).

[30] K. Zou, Q. Deng, H. Zhang, C. Huang. Glymphatic system: A gateway for neuroinflammation. Neural Regen. Res., 19, 2661-2672(2024).

[31] M. A. Erickson, P. E. Hartvigson, Y. Morofuji, J. B. Owen, D. A. Butterfield, W. A. Banks. Lipopolysaccharide impairs amyloid beta efflux from brain: Altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood-brain barrier. J. Neuroinflammation, 9, 150(2012).

[32] H. Zhao, X. Zhang, Z. Dai, Y. Feng, Q. Li, J. H. Zhang, X. Liu, Y. Chen, H. Feng. P2X7 receptor suppression preserves blood-brain barrier through inhibiting RhoA activation after experimental intracerebral hemorrhage in rats. Sci. Rep., 6, 23286(2016).

[33] M. Akhtari, S. J. Zargar, M. Vojdanian, A. Jamshidi, M. Mahmoudi. Monocyte-derived and M1 macrophages from ankylosing spondylitis patients released higher TNF-alpha and expressed more IL1B in response to BzATP than macrophages from healthy subjects. Sci. Rep., 11, 17842(2021).

[34] W. Sun, Q. Wang, R. Zhang, N. Zhang. Ketogenic diet attenuates neuroinflammation and induces conversion of M1 microglia to M2 in an EAE model of multiple sclerosis by regulating the NF-kappaB/NLRP3 pathway and inhibiting HDAC3 and P2X7R activation. Food Funct., 14, 7247-7269(2023).

[35] P. Illes, Y. Tang, Y. Zhang, H.-Y. Yin, P. Rubini. A possible causal involvement of neuroinflammatory, purinergic P2X7 receptors in psychiatric disorders. Curr. Neuropharmacol., 20, 2142-2155(2022).

[36] A. Rifat, B. Ossola, R. W. Bürli, L. A. Dawson, N. L. Brice, A. Rowland, M. Lizio, X. Xu, K. Page, P. Fidzinski, J. Onken, M. Holtkamp, F. L. Heppner, J. R. P. Geiger, C. Madry. Differential contribution of THIK-1 K+ channels and P2X7 receptors to ATP-mediated neuroinflammation by human microglia. J. Neuroinflammation, 21, 58(2024).

Tools

Get Citation

Copy Citation Text

Meng Wang, Dan Wang, Zhigang Wang, Wenbin Shi, Zhiyang Wang. Photoacoustic detecting of brain lymphatic dysfunction in inflammatory models[J]. Journal of Innovative Optical Health Sciences, 2025, 18(5): 2550015

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Research Articles

Received: Feb. 22, 2025

Accepted: Mar. 28, 2025

Published Online: Aug. 27, 2025

The Author Email: Zhiyang Wang (wzy_0617@163.com)

DOI:10.1142/S1793545825500154

Topics