Journal of Synthetic Crystals, Volume. 49, Issue 12, 2398(2020)
Review of Phase Change Memory and Its Application in Neuromorphic Computation
[1] [1] Gu M, Zhang Q, Lamon S. Nanomaterials for optical data storage[J]. Nature Reviews Materials, 2016, 1: 16070.
[2] [2] Tuma Tomas, Pantazi Angeliki, Le Gallo Manuel, et al. Stochastic phase-change neurons[J]. Nature nanotechnology, 2016, 11(8): 693-699.
[3] [3] Zhang W, Mazzarello R, Wuttig M, et al. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing[J]. Nature Reviews Materials, 2019, 4(3): 150-168.
[4] [4] Krebs D, Raoux S, Rettner C T, et al. Threshold field of phase change memory materials measured using phase change bridge devices[J]. Applied Physics Letters, 2009, 95(8):082101.
[5] [5] Zhou X, Kalikka J, Ji X, et al. Phase-change memory materials by design:a strain engineering approach[J]. Advanced Materials, 2016, 28(15): 3007-3016.
[8] [8] Ha Y H, Yi J H, Horii H, et al. An edge contact type cell for phase change RAM featuring very low power consumption[C]. Symposium on Vlsi Technology. IEEE, 2003.
[9] [9] Chen Y F, Song Z T, Chen X G, et al. RESET current reduction for phase change memory based on standard 0.13-μm CMOS technology[J]. International Workshop on Automobile, Power and Energy Engineering, 2011, 16: 401-406.
[11] [11] Jiao F Y, Chen B, Keyuan Ding, et al. Monatomic 2D phase-change memory for precise neuromorphic computing[J]. Applied Materials Today, 2020, 20: 100641.
[12] [12] Banerjee W. Challenges and applications of emerging nonvolatile memory devices[J]. Electronics, 2020, 9(6): 1029.
[13] [13] Raoux S, Wuttig M. Phase change materials: science and applications[M]. New York: Springer, 2009: 305-307.
[14] [14] Meena J, Sze S, Chand U, et al. Overview of emerging nonvolatile memory technologies[J]. Nanoscale Research Letters, 2014, 9(1): 526.
[15] [15] Wong H S P, Raoux S, Kim S, et al. Phase change memory[J]. Proceedings of the IEEE, 2010, 98(12): 2201-2227.
[16] [16] Xiong F, Bae M-H, Dai Y, et al. Self-aligned nanotube-nanowire phase change memory[J]. Nano Lett, 2013, 13(2): 464-469.
[17] [17] Mojumder N N, Abraham D W, Roy K, et al. Magnonic spin-transfer torque MRAM with low power, high speed, and error-free switching[J]. IEEE Transactions on Magnetics Mag, 2011, 48(6): 2016-2024.
[18] [18] Wu L, Chen Y F, Cai D L, et al. RESET current optimization for phase change memory based on the sub-threshold slope[J]. Materials Science in Semiconductor Processing, 2019, 97: 11-16.
[19] [19] Burr G W, Breitwisch M J, Franceschini M, et al. Phase change memory technology[J]. Journal of Vacuum ence & Technology B Microelectronics & Nanometer Structures, 2010, 28(2): 223-262.
[20] [20] Pieterson L V, Lankhorst M H R, Schijndel M V, et al. Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview[J]. Journal of Applied Physics, 2005, 97(8): 254.
[21] [21] Kolobov A V, Fons P, Frenkel A I, et al. Understanding the phase-change mechanism of rewritable optical media[J]. Nature Materials, 2004, 3(10): 703.
[25] [25] Song S, Song Z, Liu B, et al. Performance improvement of phase-change memory cell with Ge2Sb2Te5-HfO2 composite films[J]. Applied Physics A, 2010, 99(4): 767-770.
[26] [26] Huang Y H, Chen H A, Wu H H, et al. Forming-free, bi-directional polarity conductive-bridge memory devices with Ge2Sb2Te5 solid-state electrolyte and Ag active electrode[J]. Journal of Applied Physics, 2015, 117(1): 2632-708.
[29] [29] Hu S, Liu B, Li Z, et al. Identifying optimal dopants for SbTe phase-change material by high- throughput ab initio calculations with experiments[J]. Computational Materials Science, 2019, 165:51-58.
[30] [30] Li T, Wu L, Wang Y, et al. Yttrium-doped Sb2Te as high speed phase-change materials with good thermal stability[J]. Materials Letters, 2019, 247(JUL.15): 60-62.
[31] [31] Zewdie G M, Zhou Y, Sun L, et al. Chemical design principles for cache-type Sc-Sb-Te phase-change memory materials[J]. Chemistry of Materials, 2019, 31: 4008-4015.
[32] [32] Sutou Y, Kamada T, Sumiya M, et al. Crystallization process and thermal stability of Ge1Cu2Te3 amorphous thin films for use as phase change materials[J]. Acta Materialia, 2012, 60(3): 872-880.
[33] [33] Liu Y G, Chen Y F, Cai D L, et al. Fast switching and low drift of TiSbTe thin films for phase change memory applications[J]. Materials Science in Semiconductor Processing, 2019, 91: 399-403.
[34] [34] Cecchini R, Benitez J J, Sanchez-Lopez J C, et al. Nanoscale mechanically induced structural and electrical changes in Ge2Sb2Te5 films[J]. Journal of Applied Physics, 2012, 111(1): 770.
[35] [35] You H, Hu Y, Zhu X, et al. Simultaneous ultra-long data retention and low power based on Ge10Sb90/SiO2 multilayer thin films[J]. Applied Physics A, 2018, 124(2): 168.
[36] [36] Lee B S, Shelby R M, Raoux S, et al. Nanoscale nuclei in phase change materials: origin of different crystallization mechanisms of Ge2Sb2Te5 and AgInSbTe[J]. J Appl Phys, 2014, 115(6):063506.
[37] [37] Kim J H, Park J H, Ko D H. Effect of selenium doping on the crystallization behaviors of GeSb for phase-change memory applications[J]. Thin Solid Films, 2018, 653: 173-178.
[38] [38] Liu R, Hu A, Zhao Z, et al. Zn-doped Sb70Se30 thin films with multiple phase transition for high storage density and low power consumption phase change memory applications[J]. Scripta Materialia, 2020, 178: 324-328.
[39] [39] Kim J H, Byeon D S, Ko D H, et al. Physical and electrical characteristics of GexSb100-x films for use as phase-change materials[J]. Thin Solid Films, 2018: 659.
[40] [40] Liu G, Wu L, Chen X, et al. The investigations of characteristics of GeSe thin films and selector for phase change memory[J]. Journal of Alloys and Compounds, 2019: 792.
[41] [41] Sarwat, Ghazi S. Materials science and engineering of phase change random access memory[J]. Materials ence and Technology, 2017, 33(16):1890-1906.
[42] [42] Salinga M, Martin B, Kersting I, et al. Monatomic phase change memory[J]. Nature Materials, 2018, 17: 681-685.
[43] [43] Cecchini R, Selmo S, Wiemer C, et al. In-doped Sb nanowires grown by MOCVD for high speed phase change memories[J]. Micro and Nano Engineering, 2018, 2: 117-121.
[44] [44] Liu C, Yan X, Song X, et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications[J]. Nature Nanotechnology, 2018,13(5): 404-410.
[45] [45] Ding K, Wang J, Zhou Y, et al. Phase-change heterostructure enables ultralow noise and drift for memory operation[J]. Science, 2019, 366: 210-215.
[48] [48] Yu S M. Neuro-inspired computing with emerging nonvolatile memorys[J]. Proceedings of the IEEE, 2018,106(2):260-285.
[49] [49] Mead C. Neuromorphic electronic systems[J]. Proceedings of the IEEE, 1990, 78(10): 1629-1636.
[53] [53] Wuttig M, Raoux S. The science and technology of phase change materials[J]. Inorg Gen Chem, 2012, 638: 2455-2465.
[54] [54] Suri M, Bichler O, Querlioz D, et al. Phase change memory as synapse for ultra-dense neuromorphic systems:application to complex visual pattern extraction[C]. 2011 International Electron Devices Meeting. IEEE, 2012.
[56] [56] Wang S Y, Zhang D W, Zhou P. Two-dimensional materials for synaptic electronics and neuromorphic systems[J]. Science Bulletin, 2019, 64(15): 1056-1066.
[57] [57] Pantazi A, Wo Niak S, Tuma T, et al. All-memristive neuromorphic computing with level-tuned neurons[J]. Nanotechnology, 2016, 27(35): 355205.
[58] [58] Tuma T, Pantazi A, Le Gallo M, et al. Stochastic phase-change neurons[J]. Nature Nanotechnology, 2016, 11: 693-699.
[59] [59] Ryu Hojoon, Wu H N, Rao Fubo, et al. Ferroelectric tunneling junctions based on aluminum oxide/zirconium-doped hafnium oxide for neuromorphic computing[J]. Scientific reports, 2019, 9(1): 20383.
Get Citation
Copy Citation Text
DU Lingling, ZHOU Xiying, LI Xiao. Review of Phase Change Memory and Its Application in Neuromorphic Computation[J]. Journal of Synthetic Crystals, 2020, 49(12): 2398
Category:
Received: --
Accepted: --
Published Online: Jan. 26, 2021
The Author Email: DU Lingling (1004257155@qq.com)
CSTR:32186.14.