The Journal of Light Scattering, Volume. 34, Issue 1, 85(2022)
Research Progress and Application of Raman Spectroscopy on the Analysis of Nuclear Fuel
[1] [1] TORJMAN M, SHAABAN H. Nuclear energy as a primary source for a clean hydrogen energy system[J]. Energ Convers Manage, 1998, 39(1-2): 27-32.
[2] [2] BUM P C, EWING R C, NAVROTSKY A. Nuclear fuel in a reactor accident[J]. Science, 2012, 335(6073): 1184-1188.
[3] [3] CHARIT I. Accident tolerant nuclear fuels and cladding materials[J]. JOM, 2018, 70(2): 173-175.
[4] [4] ZINKLE S J, TERRANI K A, SNEAD L L. Motivation for utilizing new high-performance advanced materials in nuclear energy systems[J]. Curr Opin Solid St M, 2016, 20(6): 401-410.
[5] [5] BROWN N R, WYSOCKI A J, TERRANI K A, et al. The potential impact of enhanced accident tolerant cladding materials on reactivity initiated accidents in light water reactors[J]. Ann Nucl Energy, 2017, 99(1): 353-365.
[6] [6] CHUN H, LIM S W, CHUNG B D, et al. Safety evaluation of accident-tolerant FCM fueled core with SiC-coated zircalloy cladding for design-basis-accidents and beyond DBAs[J]. Nucl Eng Des, 2015, 289: 287-295.
[7] [7] JADEMAS D, GAN J, KEISER D, et al. Microstructural characterization of as-fabricated and irradiated U-Mo fuel using SEM/EBSD[J]. J Nucl Mater, 2018, 509: 1-8.
[8] [8] TEAGUE M, GORMAN B, KING J, et al. Microstructural characterization of high burn-up mixed oxide fast reactor fuel[J]. J Nucl Mater, 2013, 441(1-3): 267-273.
[9] [9] CHUNG B W, TORRES R A. Microstructural characterization of plutonium oxalate and oxide particles by three-dimensional focused ion beam tomography[J]. Materialia, 2019, 6: 100294.
[10] [10] RICKERT K, PRUSNICK T A, KIMANI M M, et al. Assessing UO2 sample quality with μ-Raman spectroscopy[J]. J Nucl Mater, 2019, 514: 1-11.
[11] [11] MOHUN R, DESGRANGES L, JEGOU C, et al. Quantification of irradiation-induced defects in UO2 using Raman and positron annihilation spectroscopies[J]. Acta Mater, 2019, 164(1): 512-519.
[12] [12] CISZAK C, MEMOUX M, MIRO S, et al. Micro-Raman analysis of the fuel-cladding interface in a high burnup PWR fuel rod[J]. J Nucl Mater, 2017, 495: 392-404.
[13] [13] TALIP Z, PEUGET S, MAGNIN M, et al. Raman microspectroscopic studies of unirradiated homogeneous (U0.76Pu0.24)O2+x: the effects of Pu content, non-stoichiometry, self-radiation damage and secondary phases[J]. J Raman Spectrosc, 2017, 48: 765-772.
[14] [14] AMME M, RENKER B, SCHMID B, et al. Raman microspectrometric identification of corrosion products formed on UO2 nuclear fuel during leaching experiments[J]. J Nucl Mater, 2002, 306: 202-212.
[15] [15] ONOFRI C, SABATHIER C, PALANCHER H, et al. Evolution of extended defects in polycrystalline UO2 under heavy ion irradiation: combined TEM, XRD and Raman study[J]. Nucl Instrum Methods Phys Res B, 2016, 374(1): 51-57.
[16] [16] MASLOVA O A, GUIMBRETIERE G, AMMAR M R, et al. Raman imaging and principal component analysis-based data processing on uranium oxide ceramics[J]. Mater Charact, 2017, 129: 260-269.
[17] [17] AMMAR M R, GALY N, ROUZAUD J N, et al. Characterizing various types of defects in nuclear graphite using Raman scattering: Heat treatment, ion irradiation and polishing[J]. Carbon, 2015, 95: 364-373.
[18] [18] SMITH E, DENT G. Modern Raman spectroscopy-a practical approach[M]. NJ: John Wiley and Sons; 2004.
[19] [19] NAJI M, COLLE J Y, BENES O, et al. An original approach for Raman spectroscopy analysis of radioactive materials and its application to americium-containing samples[J]. J Raman Spectrosc, 2015, 46(9): 750-756.
[20] [20] JEGOU C, GENNISSON M, PEUGET S, et al. Raman micro-spectroscopy of UOX and MOX spent nuclear fuel characterization and oxidation resistance of the high burn-up structure [J]. J Nucl Mater, 2015, 458: 343-349.
[21] [21] EDWARDS H G M, LONG D A, WILLIS I T. Remote Raman spectroscopic studies of corrosion products formed on nuclear fuel claddings used in PWR and AGR systems[J]. J Raman Spectrosc, 1995, 26(8-9): 757-762.
[22] [22] FURUTA T, KAWASAKI S. Reaction behavior of zircaloy-4 in steam-hydrogen mixtures at high temperature[J]. J Nucl Mater, 1984, 105: 119-131.
[23] [23] MASLAR J E, HURST W S, BOWERS Jr. W J, et al. In situ Raman spectroscopic investigation of zirconium-niobium alloy corrosion under hydrothermal conditions[J]. J Nucl Mater, 2001, 298: 239-247.
[26] [26] DESGRANGES L, SIMON P, Ph. MARTIN, et al. What can we learn from Raman spectroscopy on irradiation-induced defects in UO2[J]. JOM, 2014, 66(12): 2546-2552.
[27] [27] GUIMBRETIERE G, DESGRANGES L, CANIZARES A, et al. In situ Raman monitoring of He2+ irradiation induced damage in a UO2 ceramic[J]. Appl Phys Lett, 2013, 103(4): 041904.
[28] [28] TALIP Z, PEUGET S, MAGNIN M, et al. Characterization of un-irradiated MIMAS MOX fuel by Raman spectroscopy and EPMA[J]. J Nucl Mater, 2018, 499: 88-97.
[29] [29] KIP B J, MEIER R J. Determination of the local temperature at a sample during Raman experiments using Stokes and anti-Stokes Raman bands[J]. Appl Spectrosc, 1990, 44(4): 707-711.
[30] [30] ELORRIETA J M, BONALES L J, NAJI M, et al. Laser-induced oxidation of UO2: A Raman study[J]. J Raman Spectrosc, 2018, 49(5): 878-884.
[31] [31] NAJI M, MAGNANI N, BONALES L J, et al. Raman spectrum of plutonium dioxide: Vibrational and crystal field modes[J]. 2017, Phys Rev B, 2017, 95(10):104307.
[32] [32] GUIMBRETIERE G, CANIZARES A, RAIMBOUX N, et al. High temperature Raman study of UO2: A possible tool for in situ estimation of irradiation-induced heating[J]. J Raman Spectrosc, 2015, 46(4): 418-420.
[33] [33] GUIMBRETIERE G, CANIZARES A, DESGRANGES L, et al. In situ Raman estimation of irradiation-induced heating of UO2[J]. J Nucl Mater, 2016, 478: 172-175.
[34] [34] JEGOU C, CARABALLO R, De BONFILS J, et al. Oxidizing dissolution of spent MOX47 fuel subjected to water radiolysis: Solution chemistry and surface characterization by Raman spectroscopy[J]. J Nucl Mater, 2010, 399: 68-80.
[35] [35] JEGOU C, CARABALLO R, PEUGET S, et al. Raman spectroscopy characterization of actinide oxides (U1-yPuy)O2: Resistance to oxidation by the laser beam and examination of defects[J]. J Nucl Mater, 2010, 405: 235-243.
[36] [36] NGUYEN TRUNG C, BEGUN G M, PALMER D A. Aqueous uranium complexes. 2. Raman spectroscopic study of the complex formation of the dioxouranium (VI) ion with a variety of inorganic and organic ligands[J]. Inorg Chem, 1992, 31(25): 5280-5287.
[37] [37] AMME M, RENKER B, SCHMID B, et al. Raman microspectrometric identification of corrosion products formed on UO2 nuclear fuel during leaching experiments[J]. J Nucl Mater, 2002, 306: 202-212.
Get Citation
Copy Citation Text
PENG Manshu, FENG Weiwei, CAO Qi, HU Yin, CHEN Yunming, WANG Dingna. Research Progress and Application of Raman Spectroscopy on the Analysis of Nuclear Fuel[J]. The Journal of Light Scattering, 2022, 34(1): 85
Category:
Received: Dec. 6, 2021
Accepted: --
Published Online: Jul. 24, 2022
The Author Email: Manshu PENG (pengmsue@163.com)