The Journal of Light Scattering, Volume. 34, Issue 1, 85(2022)

Research Progress and Application of Raman Spectroscopy on the Analysis of Nuclear Fuel

PENG Manshu*, FENG Weiwei, CAO Qi, HU Yin, CHEN Yunming, and WANG Dingna
Author Affiliations
  • [in Chinese]
  • show less
    References(35)

    [1] [1] TORJMAN M, SHAABAN H. Nuclear energy as a primary source for a clean hydrogen energy system[J]. Energ Convers Manage, 1998, 39(1-2): 27-32.

    [2] [2] BUM P C, EWING R C, NAVROTSKY A. Nuclear fuel in a reactor accident[J]. Science, 2012, 335(6073): 1184-1188.

    [3] [3] CHARIT I. Accident tolerant nuclear fuels and cladding materials[J]. JOM, 2018, 70(2): 173-175.

    [4] [4] ZINKLE S J, TERRANI K A, SNEAD L L. Motivation for utilizing new high-performance advanced materials in nuclear energy systems[J]. Curr Opin Solid St M, 2016, 20(6): 401-410.

    [5] [5] BROWN N R, WYSOCKI A J, TERRANI K A, et al. The potential impact of enhanced accident tolerant cladding materials on reactivity initiated accidents in light water reactors[J]. Ann Nucl Energy, 2017, 99(1): 353-365.

    [6] [6] CHUN H, LIM S W, CHUNG B D, et al. Safety evaluation of accident-tolerant FCM fueled core with SiC-coated zircalloy cladding for design-basis-accidents and beyond DBAs[J]. Nucl Eng Des, 2015, 289: 287-295.

    [7] [7] JADEMAS D, GAN J, KEISER D, et al. Microstructural characterization of as-fabricated and irradiated U-Mo fuel using SEM/EBSD[J]. J Nucl Mater, 2018, 509: 1-8.

    [8] [8] TEAGUE M, GORMAN B, KING J, et al. Microstructural characterization of high burn-up mixed oxide fast reactor fuel[J]. J Nucl Mater, 2013, 441(1-3): 267-273.

    [9] [9] CHUNG B W, TORRES R A. Microstructural characterization of plutonium oxalate and oxide particles by three-dimensional focused ion beam tomography[J]. Materialia, 2019, 6: 100294.

    [10] [10] RICKERT K, PRUSNICK T A, KIMANI M M, et al. Assessing UO2 sample quality with μ-Raman spectroscopy[J]. J Nucl Mater, 2019, 514: 1-11.

    [11] [11] MOHUN R, DESGRANGES L, JEGOU C, et al. Quantification of irradiation-induced defects in UO2 using Raman and positron annihilation spectroscopies[J]. Acta Mater, 2019, 164(1): 512-519.

    [12] [12] CISZAK C, MEMOUX M, MIRO S, et al. Micro-Raman analysis of the fuel-cladding interface in a high burnup PWR fuel rod[J]. J Nucl Mater, 2017, 495: 392-404.

    [13] [13] TALIP Z, PEUGET S, MAGNIN M, et al. Raman microspectroscopic studies of unirradiated homogeneous (U0.76Pu0.24)O2+x: the effects of Pu content, non-stoichiometry, self-radiation damage and secondary phases[J]. J Raman Spectrosc, 2017, 48: 765-772.

    [14] [14] AMME M, RENKER B, SCHMID B, et al. Raman microspectrometric identification of corrosion products formed on UO2 nuclear fuel during leaching experiments[J]. J Nucl Mater, 2002, 306: 202-212.

    [15] [15] ONOFRI C, SABATHIER C, PALANCHER H, et al. Evolution of extended defects in polycrystalline UO2 under heavy ion irradiation: combined TEM, XRD and Raman study[J]. Nucl Instrum Methods Phys Res B, 2016, 374(1): 51-57.

    [16] [16] MASLOVA O A, GUIMBRETIERE G, AMMAR M R, et al. Raman imaging and principal component analysis-based data processing on uranium oxide ceramics[J]. Mater Charact, 2017, 129: 260-269.

    [17] [17] AMMAR M R, GALY N, ROUZAUD J N, et al. Characterizing various types of defects in nuclear graphite using Raman scattering: Heat treatment, ion irradiation and polishing[J]. Carbon, 2015, 95: 364-373.

    [18] [18] SMITH E, DENT G. Modern Raman spectroscopy-a practical approach[M]. NJ: John Wiley and Sons; 2004.

    [19] [19] NAJI M, COLLE J Y, BENES O, et al. An original approach for Raman spectroscopy analysis of radioactive materials and its application to americium-containing samples[J]. J Raman Spectrosc, 2015, 46(9): 750-756.

    [20] [20] JEGOU C, GENNISSON M, PEUGET S, et al. Raman micro-spectroscopy of UOX and MOX spent nuclear fuel characterization and oxidation resistance of the high burn-up structure [J]. J Nucl Mater, 2015, 458: 343-349.

    [21] [21] EDWARDS H G M, LONG D A, WILLIS I T. Remote Raman spectroscopic studies of corrosion products formed on nuclear fuel claddings used in PWR and AGR systems[J]. J Raman Spectrosc, 1995, 26(8-9): 757-762.

    [22] [22] FURUTA T, KAWASAKI S. Reaction behavior of zircaloy-4 in steam-hydrogen mixtures at high temperature[J]. J Nucl Mater, 1984, 105: 119-131.

    [23] [23] MASLAR J E, HURST W S, BOWERS Jr. W J, et al. In situ Raman spectroscopic investigation of zirconium-niobium alloy corrosion under hydrothermal conditions[J]. J Nucl Mater, 2001, 298: 239-247.

    [26] [26] DESGRANGES L, SIMON P, Ph. MARTIN, et al. What can we learn from Raman spectroscopy on irradiation-induced defects in UO2[J]. JOM, 2014, 66(12): 2546-2552.

    [27] [27] GUIMBRETIERE G, DESGRANGES L, CANIZARES A, et al. In situ Raman monitoring of He2+ irradiation induced damage in a UO2 ceramic[J]. Appl Phys Lett, 2013, 103(4): 041904.

    [28] [28] TALIP Z, PEUGET S, MAGNIN M, et al. Characterization of un-irradiated MIMAS MOX fuel by Raman spectroscopy and EPMA[J]. J Nucl Mater, 2018, 499: 88-97.

    [29] [29] KIP B J, MEIER R J. Determination of the local temperature at a sample during Raman experiments using Stokes and anti-Stokes Raman bands[J]. Appl Spectrosc, 1990, 44(4): 707-711.

    [30] [30] ELORRIETA J M, BONALES L J, NAJI M, et al. Laser-induced oxidation of UO2: A Raman study[J]. J Raman Spectrosc, 2018, 49(5): 878-884.

    [31] [31] NAJI M, MAGNANI N, BONALES L J, et al. Raman spectrum of plutonium dioxide: Vibrational and crystal field modes[J]. 2017, Phys Rev B, 2017, 95(10):104307.

    [32] [32] GUIMBRETIERE G, CANIZARES A, RAIMBOUX N, et al. High temperature Raman study of UO2: A possible tool for in situ estimation of irradiation-induced heating[J]. J Raman Spectrosc, 2015, 46(4): 418-420.

    [33] [33] GUIMBRETIERE G, CANIZARES A, DESGRANGES L, et al. In situ Raman estimation of irradiation-induced heating of UO2[J]. J Nucl Mater, 2016, 478: 172-175.

    [34] [34] JEGOU C, CARABALLO R, De BONFILS J, et al. Oxidizing dissolution of spent MOX47 fuel subjected to water radiolysis: Solution chemistry and surface characterization by Raman spectroscopy[J]. J Nucl Mater, 2010, 399: 68-80.

    [35] [35] JEGOU C, CARABALLO R, PEUGET S, et al. Raman spectroscopy characterization of actinide oxides (U1-yPuy)O2: Resistance to oxidation by the laser beam and examination of defects[J]. J Nucl Mater, 2010, 405: 235-243.

    [36] [36] NGUYEN TRUNG C, BEGUN G M, PALMER D A. Aqueous uranium complexes. 2. Raman spectroscopic study of the complex formation of the dioxouranium (VI) ion with a variety of inorganic and organic ligands[J]. Inorg Chem, 1992, 31(25): 5280-5287.

    [37] [37] AMME M, RENKER B, SCHMID B, et al. Raman microspectrometric identification of corrosion products formed on UO2 nuclear fuel during leaching experiments[J]. J Nucl Mater, 2002, 306: 202-212.

    CLP Journals

    [1] SHI Can, YAO Jianlin. In-situ SERS Studies on the Degradation of Methyl Orange at Cu2O-Au Composites Surfaces[J]. The Journal of Light Scattering, 2023, 35(4): 391

    Tools

    Get Citation

    Copy Citation Text

    PENG Manshu, FENG Weiwei, CAO Qi, HU Yin, CHEN Yunming, WANG Dingna. Research Progress and Application of Raman Spectroscopy on the Analysis of Nuclear Fuel[J]. The Journal of Light Scattering, 2022, 34(1): 85

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 6, 2021

    Accepted: --

    Published Online: Jul. 24, 2022

    The Author Email: Manshu PENG (pengmsue@163.com)

    DOI:10.13883/j.issn1004-5929.202201015

    Topics