Journal of Quantum Optics, Volume. 28, Issue 2, 180(2022)
All-solid-state Continuous Wave Single-Frequency 455 nm Blue Ti:Sapphire Laser
[1] [1] WALL K F. Blue light sources based on Ti:sapphire lasers[C]. Applications of Lasers for Sensing & Free Space Communications, 2011, paper LWA2:1-3. DOI: 10.1364/LSC.2011.LWA2.
[2] [2] WANG Y F, ZHANG X G, WANG D Y, et al. Cs Faraday optical filter with a single transmission peak resonant with the atomic transition at 455 nm[J]. Opt Express, 2012, 20(23): 25817-25825. DOI: 10.1364/OE.20.025817.
[3] [3] AUCHTER C, NOEL T W, HOFFMAN M R, et al. Measurement of the branching fractions and life time of the 5D5/2 level of Ba+[J]. Physical Review A, 2014, 90(6): 060501. DOI: 10.1103/PhysRevA.90.060501.
[4] [4] LE FLOHIC M P, ALLAIN J Y, STPHAN G M, et al. Room-temperature continuous-wave upconversion laser at 455 nm in a Tm3+ fluorozirconate fiber[J]. Opt Lett, 1994, 19(23): 1982-11984. DOI: 10.1364/OL.19.001982.
[5] [5] SCHMIDT M, HEUMANN E, CZERANOWSKY C, et al. Generation of 455nm radiation by intracavity doubling of a Nd:LiLuF4 laser[C]. // Conf. Lasers Electro-Opt., OSA Tech. Dig., 2001, paper CThC1: 387-388. DOI: 10.1109/CLEO.2001.947951.
[6] [6] DL pro | TOPTICA Photonics AG[DB/OL]. https://www.toptica.com/products/tunable-diode-lasers/ecdl-dfb-lasers/dl-pro/. [2022.02.01].
[7] [7] RONG S K, ZHU X L, CHEN W B. All-solid-state narrow-linewidth 455-nm blue laser based on Ti:sapphire crystal[J]. Chin Opt Lett, 2009, 7(1): 43-45. DOI: 10.3788/COL20090701.0043.
[8] [8] LI F Q, LI H J, LU H D. Realization of a Tunable 455.5-nm Laser With Low Intensity Noise by Intracavity Frequency-Doubled Ti:sapphire laser[J]. IEEE Journal of Quantum electronics, 2016, 52(2): 0018-9197. DOI: 10.1109/JQE.2015.2509243.
[9] [9] LI F Q, ZHAO B,WEI J, et al. Continuously tunable single-frequency 455 nm blue laser for high-state excitation transition of cesium[J]. Opt Lett, 2019, 44(15): 3785-3788. DOI: 10.1364/OL.44.003785.
[10] [10] SUN Y, LU H D, SU J. Continuous-wave, single-frequency, all-solid-state Ti:Al2O3 laser[J]. Acta Sinica Quantum Optica, 2008, 14(3): 344-347. DOI: 1007-6654(2008)03-0344-04.
[11] [11] HARRISON J, FINCH A, RINES D M, et al. Low-threshold, cw, all-solid-state Ti:Al2O3 laser[J]. Opt Lett, 1991, 16(8): 581-583. DOI: 10.1364/OL.16.000581.
[12] [12] LIAO Z M, PAYNE S A, DAWSON J, et al. Thermally induced dephasing in periodically poled KTP frequency-doubling crystals[J]. Opt Soc Am, 2004, 21(12): 2191-2196. DOI: 10.1364/JOSAB.21.002191.
[15] [15] LU H D, SU J, ZHENG Y H, et al. Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers[J]. Opt Lett, 2014, 39(5): 1117-1120. DOI: 10.1364/OL.39.001117.
[16] [16] WEI J, CAO X C, JIN P X, et al. Diving angle optimization of BRF in a single-frequency continuous-wave wideband tunable titanium: sapphire laser[J]. Opt Express, 2021, 29(5): 6714-6725. DOI: 10.1364/OE.419580.
Get Citation
Copy Citation Text
QIN Wei-xia, LI Feng-qin. All-solid-state Continuous Wave Single-Frequency 455 nm Blue Ti:Sapphire Laser[J]. Journal of Quantum Optics, 2022, 28(2): 180
Category:
Received: Feb. 10, 2022
Accepted: --
Published Online: Oct. 14, 2022
The Author Email: LI Feng-qin (lfq@sxu.edu.cn)