INFRARED, Volume. 45, Issue 1, 1(2024)

Teracycle Detection: Starting from the Four Major Astronomical Discoveries in 1960s (II)

Yong-Gang ZHANG1,2、*, Yi GU1,2,3, Ying-Jie MA1,2, Xiu-Mei SHAO1,2, Xue LI1,2,3, and Hai-Mei GONG1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(49)

    [1] [1] Penzias A A, Wilson R W. A measurement of excess antenna temperature at 4080 Mc/s [J]. The Astrophysical Journal, 1965, 142(1): 419-420.

    [2] [2] Dicke R H, Peebles P J E, Roll P G, et al. Cosmic black-body radiation [J]. The Astrophysical Journal, 1965, 142(1): 414-419.

    [3] [3] Tabor W J, Sibilia J T. Masers for the Telstar satellite communications [J]. Bell System Technical Journal, 1963, 42: 1863-1886.

    [4] [4] Penzias A A. Helium-cooled reference noise source in a 4-kMc waveguide [J]. Rev Sci Instrum, 1965, 36(1): 68-70.

    [5] [5] Roll P G, Wilkinson D T. Cosmic background radiation at 3.2 cm-support for cosmic black-body radiation [J]. Phys Rev Lett, 1966, 16(10): 405-407.

    [6] [6] Howell T F, Shakeshaft J R. Measurement of the minimum cosmic background radiation at 20.7 cm wavelength [J]. Nature, 1966, 210: 1318-1319.

    [7] [7] Penzias A A, Wilson R W. A measurement of the background temperature at 1415 MHz [J]. Astronomical Journal, 1967, 72: 315.

    [8] [8] Welch W J, Keachie S, Thornton D D, et al. Measurement of the cosmic microwave background temperature at 1.5-cm wavelength [J]. Physical Review Letters, 1967, 18(24): 1068-1070.

    [9] [9] Field G B, Hitchcock J L. Cosmic black-body radiation at λ=2.6 mm [J]. Phys Rev Lett, 1966, 16(18): 817-818.

    [10] [10] Thaddeus P, Clauser J F. Cosmic microwave radiation at λ=2.63 mm from observation of interstellar CN [J]. Phys Rev Lett, 1966, 16(18): 819-822 .

    [11] [11] Wilson R W. The cosmic microwave background radiation [J]. Science, 1979, 205: 866-874.

    [12] [12] Hewish A, Bell S J, Pilkington J D H, et al. Observation of a rapid pulsating radio source [J]. Nature, 1968, 217: 709-713.

    [13] [13] Greenstein J L, Matthews T A. Red-shift of the unusual radio source: 3C 48 [J]. Nature, 1963, 197: 1041-1042.

    [14] [14] Schmidt M. 3C 273: A star-like object with large red-shift [J]. Nature, 1963, 197: 1040.

    [15] [15] Hazard C, Mackey M B, Shimmins A J. Investigation of the radio source 3C 273 by the method of lunar occultations [J]. Nature, 1963, 197: 1037-1039.

    [16] [16] Oke J B. Absolute energy distribution in the optical spectrum of 3C 273 [J]. Nature, 1963, 197: 1040-1041.

    [17] [17] Matthews T A, Sandage A R. Optical identification of 3C 48, 3C 196 and 3C 286 with stellar objects [J]. The Astrophysical Journal, 1963, 138: 30-56.

    [18] [18] Greenstein J L, Schmidt M. The quasi-stellar radio source 3C 48 and 3C 273 [J]. The Astrophysical Journal, 1964, 140(1): 1-35.

    [19] [19] Kafka P. How to count Quasars [J]. Nature, 1967, 213: 346-350.

    [20] [20] Swings P, Rosenfeld L. Considerations regarding interstellar molecules [J]. The Astrophysical Journal, 1937, 86: 483-486.

    [21] [21] McKellar A. Evidence for the molecular origin of some hitherto unidentified interstellar lines [J]. PASP, 1940, 52: 187-192.

    [22] [22] Douglas A E, Herzberg G. CH+ in interstellar space and in the laboratory [J]. The Astrophysical Journal, 1941, 94: 381D.

    [23] [23] Cheung A C, Rank D M, Townes C H. Detection of the NH3 molecules in the interstellar medium by their microwave emission [J]. Physical Review Letters, 1968, 21(25): 1701-1705.

    [24] [24] Cheung A C, Rank D M, Townes C H, et al. Further microwave emission lines and clouds of ammonia in our Galaxy [J]. Nature, 1969, 221: 917-919.

    [25] [25] Cheung A C, Rank D M, Townes C H. Detection of water in interstellar region by its microwave radiation [J]. Nature, 1969, 221: 626-628.

    [26] [26] Snyder L E, David Buhl D, Zuckerman B, et al. Microwave detection of interstellar formaldehyde [J]. Physical Review Letters, 1969, 22(13): 679-681.

    [27] [27] Gordon I E, Rothman L S, Hargreaves R J, et, al. The HITRAN2020 molecular spectroscopic database [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2022, 277: 107949.

    [30] [30] Hulse R A, Taylor J H. A high-sensitivity pulsar survey [J]. The Astrophysical Journal, 1974, 191: 59-61.

    [31] [31] Hulse R A, Taylor J H. Discovery of a pulsar in a binary system [J]. The Astrophysical Journal, 1975, 195: 51-53.

    [32] [32] Damour T. 1974: the discovery of the first binary pulsar [J]. Class Quantum Grav, 2015, 32: 124009.

    [33] [33] Smoot G F, Bennett C L, Weber R, et al. COBE differential microwave radiometers: instrument design and implementation [J]. The Astrophysical Journal, 1990, 360: 685-695.

    [34] [34] Smoot G F, Bennett C L, Kought A, et, al. Structure in the COBE differential microwave radiometers first-year maps [J]. The Astrophysical Journal, 1992, 396: 1-5.

    [35] [35] Banday A J, Górski K M, Bennett C L, et al. Noncosmological signal contributions to the COBE DMR 4 year sky maps [J]. The Astrophysical Journal, 1996, 468: 85-89.

    [36] [36] Hauser M G, Arendt R G, Kelsall T, et al. The COBE diffuse infrared background experiment search for the cosmic infrared background I. Limits and detection [J]. The Astrophysical Journal, 1998, 508: 25-43.

    [37] [37] Mather J C, Cheng E S, Cottingham D A, et al. Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument [J]. The Astrophysical Journal, 1994, 420: 439-444.

    [38] [38] Wright E L, Mather J C, Bennett C L, et al. Preliminary spectral observations of the galaxy with a 7°beam by the cosmic background explorer (COBE) [J]. The Astrophysical Journal, 1991, 381: 200-209.

    [39] [39] Fixsen D J, Cheng E S, Gales J M, et al. The cosmic microwave background spectrum from the full COBE FIRAS data set [J]. The Astrophysical Journal, 1996, 473: 576-587.

    [40] [40] Mather J C, Fixsen D J, Shafe R A, et al. Calibration design for the COBE far infrared absolute spectrophotometer (FIRAS) [J]. The Astrophysical Journal, 1999, 512: 511-520.

    [41] [41] Kessler M F. The infrared space observatory (ISO) mission [J]. Adv Space Res, 2002, 30(9): 1957-1965.

    [42] [42] Murakami H, Freund M F, Gangak K, et, al. The IRTS (Infrared Telescope in Space) mission [J]. Publ Astron Soc Japan, 1996, 48: 41-46.

    [43] [43] Williams R. Hubble telescope 30 years in orbit: personal reflections [J]. Research in Astronomy and Astrophysics, 2020, 20(4): 44.

    [44] [44] NASA. Hubble Space Telescope [EB/OL]. www.nasa.gov/mission_pages/hubble/main/index.html, 2023.

    [45] [45] NASA. Spitzer Space Telescope [EB/OL]. www.n-asa.gov/mission_pages/spitzer/main/index.html, 2023.

    [48] [48] NASA. WMAP Mission [EB/OL]. https://wmap.gsfc.nasa.gov/mission, 2023.

    [49] [49] ESA. Planck Mission [EB/OL]. https://sci.esa.int/web/planck, 2023.

    [50] [50] ESA. Herschel Mission [EB/OL]. https://sci.esa.int/web/herschel, 2023.

    [51] [51] NASA. James Webb Space Telescope [EB/OL]. www.nasa.gov/mission_pages/webb/main/index.html, 2023.

    [53] [53] ESA. Euclid Mission [EB/OL]. https://sci.esa.int/web/euclid, 2023.

    [55] [55] NASA. Chandra X-ray Observatory [EB/OL]. www.nasa.gov/mission_pages/chandra/main/index.html, 2023.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Yong-Gang, GU Yi, MA Ying-Jie, SHAO Xiu-Mei, LI Xue, GONG Hai-Mei. Teracycle Detection: Starting from the Four Major Astronomical Discoveries in 1960s (II)[J]. INFRARED, 2024, 45(1): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 14, 2023

    Accepted: --

    Published Online: May. 23, 2024

    The Author Email: Yong-Gang ZHANG (zhangyonggang@mail.sitp.ac.cn)

    DOI:10.3969/j.issn.1672-8785.2024.01.001

    Topics