Spectroscopy and Spectral Analysis, Volume. 44, Issue 1, 234(2024)
Evaluation of Freezing Injury Degree of Tea Plant Based on Deep Learning, Wavelet Transform and Visible Spectrum
[1] [1] Samarina L,Bobrovskikh A,Doroshkov A,et al. Frontiers in Genetics, 2020, 11: 611283.
[2] [2] He K, Zhang X, Ren S, et al. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 37(9): 1904.
[3] [3] Ren S, He K, Girshick R, et al. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137.
[4] [4] Redmon J, Divvala S, Girshick R, et al. Computer Vision & Pattern Recognition, 2016, 6(1): 779.
[5] [5] Ma J, Du K, Zheng F, et al. Computers & Electronics in Agriculture, 2018, 154: 18.
[7] [7] Jothiaruna N,Sundar K, Karthikeyan B. Computers and Electronics in Agriculture, 2019, 165: 104934.
[9] [9] Simonyan K, Zisserman A. Computer Science, 2014, 9: 1.
[10] [10] Krizhevsky A, Sutskever I, Hinton G E. Communications of the ACM, 2017, 60(6): 84.
[11] [11] Russakovsky O, Deng J, Su H, et al. International Journal of Computer Vision, 2015, 115(3): 211.
[13] [13] Chang C, Lin C. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1.
[14] [14] Mao Yilin, Li He, Wang Yu, et al. Frontiers in Plant Science, 2023, 14: 1096490.
Get Citation
Copy Citation Text
LI He, WANG Yu, FAN Kai, MAO Yi-lin, DING Shi-bo, SONG Da-peng, WANG Meng-qi, DING Zhao-tang. Evaluation of Freezing Injury Degree of Tea Plant Based on Deep Learning, Wavelet Transform and Visible Spectrum[J]. Spectroscopy and Spectral Analysis, 2024, 44(1): 234
Received: Apr. 12, 2022
Accepted: --
Published Online: Jul. 31, 2024
The Author Email: DING Zhao-tang (dzttea@163.com)