Acta Laser Biology Sinica, Volume. 33, Issue 6, 481(2024)
Research Progress of Dual-emission MOFs Fluorescent Biosensors by FRET
[1] [1] CUI Y J, YUE Y F, QIAN G D, et al. Luminescent functional metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 1126-1162.
[2] [2] LUO D W, HUANG J F, JIAN Y H, et al. Metal-organic frameworks (MOFs) as apt luminescent probes for the detection of biochemical analytes[J]. Journal of Materials Chemistry B, 2023, 11(29): 6802-6822.
[3] [3] MOHAN B, PRIYANKA, SINGH G, et al. Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection[J]. Journal of Hazardous Materials, 2023, 453: 131324.
[4] [4] XU X, MA M Y, SUN T X, et al. Luminescent guests encapsulated in metal-organic frameworks for portable fluorescence sensor and visual detection applications: a review[J]. Biosensors (Basel), 2023, 13(4): 435.
[5] [5] LUSTIG W P, MUKHERJEE S, RUDD N D, et al. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications[J]. Chemical Society Reviews, 2017, 46(11): 3242-3285.
[6] [6] GUO J L, LIU X, ZHAO J J, et al. Rational design of mesoporous chiral MOFs as reactive pockets in nanochannels for enzyme-free identification of monosaccharide enantiomers[J]. Chemical Science, 2023, 14(7): 1742-1751.
[7] [7] SUN T Y, GAO Y B, Du Y Y, et al. Recent advances in developing lanthanide metal-organic frameworks for ratiometric fluorescent sensing[J]. Frontiers in Chemistry, 2021, 8: 624592.
[8] [8] MILLER S E, TEPLENSKY M H, MOGHADAM P Z, et al. Metal-organic frameworks as biosensors for luminescence-based detection and imaging[J]. Interface Focus, 2016, 6(4): 20160027.
[9] [9] HADDAS S, ABNADES LZARO I, FANTHAM M, et al. Design of a functionalized metal-organic framework system for enhanced targeted delivery to mitochondria[J]. Journal of American Chemical Society, 2020, 142(14): 6661-6674.
[10] [10] LI H L, LUO S W, ZHANG L Q, et al. Water- and acid-sensitive Cu2O@Cu-MOF nano sustained-release capsules with superior antifouling behaviors[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1910-1920.
[11] [11] WALLRABE H, CHEN Y, PERIASAMY A, et al. Issues in confocal microscopy for quantitative FRET analysis[J]. Microscopy Research & Technique, 2006, 69(3): 196-206.
[12] [12] ZHANG Y M, CHEN Y C, BAI Y, et al. FRET-based fluorescent ratiometric probes for the rapid detection of endogenous hydrogen sulphide in living cells[J]. Analyst, 2020, 145(12): 4233-4238.
[13] [13] AKTALAY A, PONSOT F, BOSSI M L, et al. Cleavable linker incorporation into a synthetic dye-nanobody-fluorescent protein assembly: FRET, FLIM and STED microscopy[J]. Chembiochem, 2022, 23(18): e202200395.
[14] [14] FUDALA R, RAUT S, MALIWAL B P, et al. FRET enhanced fluorescent nanodiamonds[J]. Current Pharmaceutical Biotechnology, 2014, 14(13): 1127-1133.
[15] [15] WANG X Z, DU J, XIAN N N, et al. Driving force to detect Alzheimer's disease biomarkers: application of a thioflavine T@Er-MOF ratiometric fluorescent sensor for smart detection of presenilin 1, amyloid -protein and acetylcholine[J]. Analyst, 2020, 145(13): 4646-4663.
[16] [16] ALAM S R, MAHADEVAN M S, PERIASAMY A. Detecting RNA-protein interactions with EGFP-Cy3 FRET by acceptor photobleaching[J]. Current Protocols, 2023, 3(2): e689.
[17] [17] RHEENEN J V, LANGESLAG M, JALINK K. Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission[J]. Biophysical Journal, 2004, 86(4): 2517-2529.
[18] [18] BASTIAENS P I, PEPPERKOK R. Observing proteins in their natural habitat: the living cell[J]. Trends in Biochemical Sciences, 2000, 25(12): 631-637.
[19] [19] WOUTERS F S, VERVEER P J, BASTIAENS P I. Imaging biochemistry inside cells[J]. Trends in Cell Biology, 2001, 11(5): 203-211.
[20] [20] ZHANG S X, XIAO J Y, ZHONG G, et al. Design and application of dual-emission metal-organic framework-based ratiometric fluorescence sensors[J]. Analyst, 2024, 149(5): 1381-1397.
[21] [21] WANG X R, CLAVIER G, ZHANG Y, et al. A MOF/DNA luminescent sensing platform for detection of potential COVID-19 biomarkers and drugs[J]. Chemical Science, 2023, 14(20): 5386-5395.
[22] [22] ALGAR W R, HILDEBRANDT N, VOGEL S S, et al. FRET as a biomolecular research tool-understanding its potential while avoiding pitfalls[J]. Nature Methods, 2019, 16(9): 815-829.
[23] [23] RIOS A F, RADOEVA T, DE RYBEL B, et al. FRET-FLIM for visualizing and quantifying protein interactions in live plant cells[J]. Methods in Molecular Biology, 2017, 1497: 135-146.
[24] [24] BONILLA P A, SHRESTHA R. FLIM-FRET protein-protein interaction assay[J]. Methods in Molecular Biology, 2024, 2797: 261-269.
[25] [25] SZAB , SZENDI-SZATMRI T, SZLLSI J, et al. Quo vadis FRET? Frster's method in the era of superresolution[J]. Methods and Applications Fluorescence, 2020, 8(3): 032003.
[26] [26] ZHAO W S, ZHAO S Q, LI LJ, et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy[J]. Nature Biotechnology, 2022, 40(4): 606-617.
[27] [27] WEN G, LI S M, WANG L B, et al. High-fidelity structured illumination microscopy by point-spread-function engineering[J]. Light: Science & Applications, 2021, 10(1): 70.
Get Citation
Copy Citation Text
ZHANG Yan, XIAO Nannan. Research Progress of Dual-emission MOFs Fluorescent Biosensors by FRET[J]. Acta Laser Biology Sinica, 2024, 33(6): 481
Category:
Received: Apr. 25, 2024
Accepted: Feb. 27, 2025
Published Online: Feb. 27, 2025
The Author Email: Nannan XIAO (xiaonn@nankai.edu.cn)