Journal of Innovative Optical Health Sciences, Volume. 16, Issue 1, 2330002(2023)

Observing single cells in whole organs with optical imaging

Xiaoquan Yang1,2, Tao Jiang2, Lirui Liu1, Xiaojun Zhao1, Ximiao Yu1, Minjun Yang1, Guangcai Liu1, and Qingming Luo3、*
Author Affiliations
  • 1Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
  • 2HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, P. R. China
  • 3School of Biomedical Engineering, Hainan University, Haikou 570228, P. R. China
  • show less
    References(241)

    [1] P. Mazzarello. A unifying concept: The history of cell theory. Nat Cell Biol., 1, E13-E15(1999).

    [2] M. P. Snyder, S. Lin, A. Posgai et al. The human body at cellular resolution: The NIH human biomolecular atlas program. Nature, 574, 187-192(2019).

    [3] K. Zilles, K. Amunts. TIMELINE centenary of Brodmann’s map — Conception and fate. Nat. Rev. Neurosci., 11, 139-145(2010).

    [4] M. F. Glasser, T. S. Coalson, E. C. Robinson et al. A multi-modal parcellation of human cerebral cortex. Nature, 536, 171(2016).

    [5] K. M. Yamada, A. D. Doyle, J. Lu. Cell-3D matrix interactions: Recent advances and opportunities. Trends. Cell. Biol., 32, 883-895(2022).

    [6] H. J. Park, K. J. Friston. Structural and functional brain networks: From connections to cognition. Science, 342, 579(2013).

    [7] L. Luo. Architectures of neuronal circuits. Science, 373, eabg7285(2021).

    [8] R. Weissleder, M. J. Pittet. Imaging in the era of molecular oncology. Nature, 452, 580-589(2008).

    [9] L. V. Wang, H.-I. Wu. Biomedical Optics: Principles and Imaging(2007).

    [10] E. F. Ring, K. Ammer. Infrared thermal imaging in medicine. Physiol. Meas., 33, R33-R46(2012).

    [11] S. Iwano, M. Sugiyama, H. Hama et al. Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science, 359, 935-939(2018).

    [12] W. J. Smith. Modern Optical Engineering: The Design of Optical Systems(2008).

    [13] A. Villringer, B. Chance. Non-invasive optical spectroscopy and imaging of human brain function. Trends. Neurosci., 20, 435-442(1997).

    [14] S. H. Yun, S. J. J. Kwok. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng., 1, 0008(2017).

    [15] T. Vo-Dinh. Biomedical Photonics Handbook(2015).

    [16] S. L. Jacques. Optical properties of biological tissues: A review. Phys. Med. Biol., 58, R37-R61(2013).

    [17] J. E. Falk, K. M. Smith. Porphyrins and Metalloporphyrins: A New Edition based on the Original Volume by J. E. Falk(1975).

    [18] T. G. Spiro. Metal Ions in Biology(1980).

    [19] F. F. Jobsis. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198, 1264-1267(1977).

    [20] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(1999).

    [21] V. Ntziachristos. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Meth., 7, 603-614(2010).

    [22] R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling et al. Noninvasive detection of changes in membrane potential in cultured neurons by light scattering. Proc. Natl. Acad. Sci. USA, 88, 9382-9386(1991).

    [23] N. N. Boustany, S. A. Boppart, V. Backman. Microscopic imaging and spectroscopy with scattered light. Annu. Rev. Biomed. Eng., 12, 285-314(2010).

    [24] B. Valeur. Molecular Fluorescence: Principles and Applications(2002).

    [25] J. R. Lakowicz. Principles of Fluorescence Spectroscopy(1999).

    [26] N. Billinton, A. W. Knight. Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal. Biochem., 291, 175-197(2001).

    [27] B. Chance, G. R. Williams. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J. Biol. Chem., 217, 383-393(1955).

    [28] B. Chance, G. R. Williams, W. F. Holmes et al. Respiratory enzymes in oxidative phosphorylation. V. A mechanism for oxidative phosphorylation. J. Biol. Chem., 217, 439-451(1955).

    [29] A. Mayevsky, B. Chance. Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer. Science, 217, 537-540(1982).

    [30] A. C. Giese, P. A. Leighton. Phosphorescence of cells and cell products. Science, 85, 428-429(1937).

    [31] B. R. Masters, P. T. So. Antecedents of two-photon excitation laser scanning microscopy. Microsc. Res. Tech., 63, 3-11(2004).

    [32] K. Wang, Y. Pan, X. L. Chen et al. 3-photon fluorescence and third-harmonic generation imaging of myelin sheaths in mouse digital skin in vivo: A comparative study. J. Innov. Opt. Heal. Sci., 15, 2250003(2022).

    [33] K. X. Wang, S. Y. Tang, S. Q. Wang et al. Monitoring microenvironment of Hep G2 cell apoptosis using two-photon fluorescence lifetime imaging microscopy. J. Innov. Opt. Heal. Sci., 15, 2250014(2022).

    [34] A. C. S. Talari, Z. Movasaghi, S. Rehman et al. Raman spectroscopy of biological tissues. Appl. Spectrosc. rev., 50, 46-111(2015).

    [35] Z. Z. Li, X. J. Zhang, C. G. Xiao et al. Combination of multi-focus Raman spectroscopy and compressive sensing for parallel monitoring of single-cell dynamics. J. Innov. Opt. Heal. Sci., 14, 2150021(2021).

    [36] Q. W. Wang, S. Wang, S. D. Cui et al. Multivariate analysis of serum surface-enhanced Raman spectroscopy of liver cancer patients. J. Innov. Opt. Heal. Sci., 15, 2250032(2022).

    [37] K. Czamara, K. Majzner, M. Z. Pacia et al. Raman spectroscopy of lipids: A review. J. Raman. Spectrosc., 46, 4-20(2015).

    [38] A. Rygula, K. Majzner, K. M. Marzec et al. Raman spectroscopy of proteins: A review. J. Raman. Spectrosc., 44, 1061-1076(2013).

    [39] I. L. Fabelinskii. Molecular Scattering of Light(1968).

    [40] R. Prevedel, A. Diz-Munoz, G. Ruocco et al. Brillouin microscopy: An emerging tool for mechanobiology. Nat Meth., 16, 969-977(2019).

    [41] G. Scarcelli, S. H. Yun. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat Photon., 2, 39-43(2007).

    [42] P. J. Campagnola, L. M. Loew. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol., 21, 1356-1360(2003).

    [43] I. Freund, M. Deutsch. Second-harmonic microscopy of biological tissue. Opt. Lett., 11, 94(1986).

    [44] R. M. Williams, W. R. Zipfel, W. W. Webb. Interpreting second-harmonic generation images of collagen I fibrils. Biophys. J., 88, 1377-1386(2005).

    [45] R. Steinmeier, I. Bondar, C. Bauhuf et al. Laser doppler flowmetry mapping of cerebrocortical microflow: Characteristics and limitations. Neuroimage, 15, 107-119(2002).

    [46] B. de Campos Vidal, M. L. Mello, A. C. Caseiro-Filho et al. Anisotropic properties of the myelin sheath. Acta. Histochem., 66, 32-39(1980).

    [47] M. Wolman. Polarized light microscopy as a tool of diagnostic pathology. J. Histochem. Cytochem., 23, 21-50(1975).

    [48] A. S. Stender, K. Marchuk, C. Liu et al. Single cell optical imaging and spectroscopy. Chem. Rev., 113, 2469-2527(2013).

    [49] D. J. Brady. Optical Imaging and Spectroscopy(2009).

    [50] H. A. Macleod. Thin-Film Optical Filters(2018).

    [51] F. Zernike. Phase contrast, a new method for the microscopic observation of transparent objects. Physica, 9, 13(1942).

    [52] F. Zernike. Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica, 9, 7(1942).

    [53] F. Zernike. How I discovered phase contrast. Science, 121, 345-349(1955).

    [54] R. D. Allen, G. B. David, G. Nomarski. The zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Z. Wiss. Mikrosk., 69, 193-221(1969).

    [55] P. Marquet, B. Rappaz, P. J. Magistretti et al. Digital holographic microscopy: A noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett., 30, 468-470(2005).

    [56] J. Mertz. Introduction to Optical Microscopy(2019).

    [57] J.-X. Cheng, X. S. Xie. Coherent Raman Scattering Microscopy(2013).

    [58] J. X. Cheng, X. S. Xie. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science, 350, aaa8870(2015).

    [59] C. W. Freudiger, W. Min, B. G. Saar et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science, 322, 1857-1861(2008).

    [60] G. Clark, F. H. Kasten, H. J. Conn. History of Staining(1983).

    [61] R. Weissleder, V. Ntziachristos. Shedding light onto live molecular targets. Nat. Med., 9, 123-128(2003).

    [62] J. D. Bancroft. Theory and Practice of Histological Techniques(1982).

    [63] B. Kleeman, A. Olsson, T. Newkold et al. A guide to choosing fluorescent protein combinations for flow cytometric analysis based on spectral overlap. Cytom. Part. A., 93, 556-562(2018).

    [64] X. T. Zheng, C. M. Li. Single cell analysis at the nanoscale. Chem. Soc. Rev., 41, 2061-2071(2012).

    [65] R. S. Clay, T. H. Court. The History of the Microscope(1978).

    [66] G. Airy. On the diffraction of an object-glass with circular aperture. Trans. Camb. Phil. Soc., 5, 9(1835).

    [67] L. Rayleigh. On the theory of optical images, with special reference to the microscope. J. Microsc-Oxford., 23, 28(1903).

    [68] R. Horstmeyer, R. Heintzmann, G. Popescu et al. Standardizing the resolution claims for coherent microscopy. Nat. Photon., 10, 68-71(2016).

    [69] S. J. Sahl, S. W. Hell, S. Jakobs. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol., 18, 685-701(2017).

    [70] R. Heintzmann, C. Cremer. Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating. Proc. SPIE Int. Soc. Opt. Eng., 3568, 185-196(1999).

    [71] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc-Oxford, 198, 82-87(2000).

    [72] M. T. Wang, L. Wang, X. M. Zheng et al. Nonlinear scanning structured illumination microscopy based on nonsinusoidal modulation. J. Innov. Opt. Heal. Sci., 14, 2142002(2021).

    [73] Y. Wu, H. Shroff. Faster, sharper, and deeper: Structured illumination microscopy for biological imaging. Nat. Meth., 15, 1011-1019(2018).

    [74] S. A. Shroff, J. R. Fienup, D. R. Williams. Phase-shift estimation in sinusoidally illuminated images for lateral superresolution. J. Opt. Soc. Am. A, 26, 413-424(2009).

    [75] C. B. Muller, J. Enderlein. Image scanning microscopy. Phys. Rev. Lett., 104, 198101(2010).

    [76] A. G. York, S. H. Parekh, D. Dalle Nogare et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat. Meth., 9, 749-754(2012).

    [77] E. Mudry, K. Belkebir, J. Girard et al. Structured illumination microscopy using unknown speckle patterns. Nat Photon., 6, 312-315(2012).

    [78] M. G. Gustafsson. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA, 102, 13081-13086(2005).

    [79] R. Heintzmann. Saturated patterned excitation microscopy with two-dimensional excitation patterns. Micron, 34, 283-291(2003).

    [80] E. Betzig. Proposed method for molecular optical imaging. Opt. Lett., 20, 237-239(1995).

    [81] E. Betzig, G. H. Patterson, R. Sougrat et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [82] M. J. Rust, M. Bates, X. W. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Meth., 3, 793-795(2006).

    [83] S. T. Hess, T. P. K. Girirajan, M. D. Mason. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 91, 4258-4272(2006).

    [84] A. Small, S. Stahlheber. Fluorophore localization algorithms for super-resolution microscopy. Nat. Meth., 11, 267-279(2014).

    [85] T. Dertinger, R. Colyer, G. Iyer et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. USA, 106, 22287-22292(2009).

    [86] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [87] S. W. Hell. Far-field optical nanoscopy. Science, 316, 1153-1158(2007).

    [88] M. Andresen, M. C. Wahl, A. C. Stiel et al. Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc. Natl. Acad. Sci. USA, 102, 13070-13074(2005).

    [89] V. Astratov. Label-Free Super-Resolution Microscopy(2019).

    [90] W. Z. Li Gong, Y. Ma, Z. Huang. Higher-order coherent anti-Stokes Raman scattering microscopy realizes label-free super-resolution vibrational imaging. Nat Photon., 14, 8(2020).

    [91] F. Balzarotti, Y. Eilers, K. C. Gwosch et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 355, 606-612(2017).

    [92] J. A. Conchello, J. W. Lichtman. Optical sectioning microscopy. Nat Meth., 2, 920-931(2005).

    [93] F. S. Ernst, H. K. Stelzer, B.-J. Chang, F. Preusser et al. Light sheet fluorescence microscopy. Nat. Rev. Meth. Primers, 1, 73(2021).

    [94] J. Huisken, J. Swoger, F. Del Bene et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science, 305, 1007-1009(2004).

    [95] A. H. Voie, D. H. Burns, F. A. Spelman. Orthogonal-plane fluorescence optical sectioning: Three-dimensional imaging of macroscopic biological specimens. J. Microsc., 170, 229-236(1993).

    [96] P. J. Keller, A. D. Schmidt, J. Wittbrodt et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science, 322, 1065-1069(2008).

    [97] T. Vettenburg, H. I. Dalgarno, J. Nylk et al. Light-sheet microscopy using an Airy beam. Nat Meth., 11, 541-544(2014).

    [98] T. A. Planchon, L. Gao, D. E. Milkie et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Meth., 8, 417-423(2011).

    [99] B. C. Chen, W. R. Legant, K. Wang et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science, 346, 1257998(2014).

    [100] F. Helmchen, W. Denk. Deep tissue two-photon microscopy. Nat. Meth., 2, 932-940(2005).

    [101] W. Denk, J. H. Strickler, W. W. Webb. Two-photon laser scanning fluorescence microscopy. Science, 248, 73-76(1990).

    [102] M. D. Cahalan, I. Parker, S. H. Wei et al. Two-photon tissue imaging: Seeing the immune system in a fresh light. Nat. Rev. Immunol., 2, 872-880(2002).

    [103] W. R. Zipfel, R. M. Williams, W. W. Webb. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol., 21, 1368-1376(2003).

    [104] J. B. Pawley. Handbook of Biological Confocal Microscopy(2006).

    [105] M. Minsky. Memoir on inventing the confocal scanning microscope. Scanning, 10, 11(1988).

    [106] Y. C. Wu, X. F. Han, Y. J. Su et al. Multiview confocal super-resolution microscopy. Nature, 600, 279(2021).

    [107] T. Wilson, R. Juskaitis, M. A. Neil et al. Confocal microscopy by aperture correlation. Opt. Lett., 21, 1879-1981(1996).

    [108] A. Egner, V. Andresen, S. W. Hell. Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: Theory and experiment. J. Microsc-Oxford, 206, 24-32(2002).

    [109] M. H. Liang, R. L. Stehr, A. W. Krause. Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination. Opt. Lett., 22, 751-753(1997).

    [110] J. Mertz. Optical sectioning microscopy with planar or structured illumination. Nat. Meth., 8, 811-819(2011).

    [111] M. A. A. Neil, R. Juskaitis, T. Wilson. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett., 22, 1905-1907(1997).

    [112] D. Lim, K. K. Chu, J. Mertz. Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy. Opt. Lett., 33, 1819-1821(2008).

    [113] C. Ventalon, J. Mertz. Quasi-confocal fluorescence sectioning with dynamic speckle illumination. Opt. Lett., 30, 3350-3352(2005).

    [114] W. J. Liu, K. C. Toussaint, C. Okoro et al. Breaking the axial diffraction limit: A guide to axial super-resolution fluorescence microscopy. Laser Photon. Rev., 12, 1700333(2018).

    [115] C. K. Li, V. Le, X. N. Wang et al. Resolution enhancement and background suppression in optical super-resolution imaging for biological applications. Laser Photon. Rev., 15, 1900084(2021).

    [116] S. L. Ernst, H. K. Stelzer. Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: Confocal theta microscopy. Opt. Commun., 11, 10(1994).

    [117] D. J. Stephens, V. J. Allan. Light microscopy techniques for live cell imaging. Science, 300, 82-86(2003).

    [118] C. M. Winterflood, T. Ruckstuhl, D. Verdes et al. Nanometer axial resolution by three-dimensional supercritical angle fluorescence microscopy. Phys. Rev. Lett., 105, 108103(2010).

    [119] K. C. Gwosch, J. K. Pape, F. Balzarotti et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Meth., 17, 217(2020).

    [120] E. H. K. S. Stefan Hell. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A, 9, 8(1992).

    [121] D. A. A. M. G. L. Gustafsson, J. W. Sedat. I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J. Microsc.-Oxford, 195, 7(1999).

    [122] M. C. Lang, J. Engelhardt, S. W. Hell. 4Pi microscopy with linear fluorescence excitation. Opt. Lett., 32, 259-261(2007).

    [123] D. Aquino, A. Schonle, C. Geisler et al. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nat. Meth., 8, 353(2011).

    [124] G. Shtengel, J. A. Galbraith, C. G. Galbraith et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. USA, 106, 3125-3130(2009).

    [125] M. G. L. Gustafsson, L. Shao, P. M. Carlton et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J., 94, 4957-4970(2008).

    [126] M. T. G. Mickaël Lelek, G. Beliu, F. Schueder, J. Griffié, S. Manley, R. Jungmann, M. Sauer, M. Lakadamyali, C. Zimmer. Single-molecule localization microscopy. Nat. Rev. Meth. Primers, 1, 39(2021).

    [127] B. Huang, W. Q. Wang, M. Bates et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science, 319, 810-813(2008).

    [128] S. R. Arridge, J. C. Hebden. Optical imaging in medicine: II. Modelling and reconstruction. Phys. Med. Biol., 42, 841-853(1997).

    [129] S. L. Jacques, B. W. Pogue. Tutorial on diffuse light transport. J. Biomed. Opt., 13, 041302(2008).

    [130] V. Ntziachristos, J. Ripoll, L. H. V. Wang et al. Looking and listening to light: The evolution of whole-body photonic imaging. Nat. Biotechnol., 23, 313-320(2005).

    [131] C. Dunsby, P. M. W. French. Techniques for depth-resolved imaging through turbid media including coherence-gated imaging. J. Phys. D. Appl. Phys., 36, R207-R227(2003).

    [132] S. Yoon, M. Kim, M. Jang et al. Deep optical imaging within complex scattering media. Nat. Rev. Phys., 2, 141-158(2020).

    [133] J. C. Hebden, S. R. Arridge, D. T. Delpy. Optical imaging in medicine: I. Experimental techniques. Phys. Med. Biol., 42, 825-840(1997).

    [134] N. G. Horton, K. Wang, D. Kobat et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photon., 7, 205-209(2013).

    [135] G. S. Hong, A. L. Antaris, H. J. Dai. Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng., 1, 0010(2017).

    [136] K. Wang, Q. Wang, Q. M. Luo et al. Fluorescence molecular tomography in the second near-infrared window. Opt. Exp., 23, 12669-12679(2015).

    [137] J. A. Carr, M. Aellen, D. Franke et al. Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared. Proc. Natl. Acad. Sci. USA, 115, 9080-9085(2018).

    [138] D. Huang, E. A. Swanson, C. P. Lin et al. Optical coherence tomography. Science, 254, 1178-1181(1991).

    [139] J. M. Schmitt. Optical coherence tomography (OCT): A review. IEEE J. Sel. Top. Quant., 5, 1205-1215(1999).

    [140] E. Beaurepaire, A. C. Boccara, M. Lebec et al. Full-field optical coherence microscopy. Opt. Lett., 23, 244-246(1998).

    [141] B. E. Bouma, G. J. Tearney. Handbook of Optical Coherence Tomography(2002).

    [142] I. M. Stockford, S. P. Morgan, P. C. Chang et al. Analysis of the spatial distribution of polarized light backscattered from layered scattering media. J. Biomed. Opt., 7, 313-320(2002).

    [143] S. P. Morgan, M. P. Khong, M. G. Somekh. Effects of polarization state and scatterer concentration on optical imaging through scattering media. Appl. Opt., 36, 1560-1565(1997).

    [144] T. Treibitz, Y. Y. Schechner. Active polarization descattering. IEEE Trans. Pattern. Anal., 31, 385-399(2009).

    [145] N. Ji. Adaptive optical fluorescence microscopy. Nat. Meth., 14, 374-380(2017).

    [146] M. J. Booth, M. A. A. Neil, R. Juskaitis et al. Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci. USA, 99, 5788-5792(2002).

    [147] K. M. Hampson, R. Turcotte, D. T. Miller et al. Adaptive optics for high-resolution imaging. Nat. Rev. Meth. Primers, 1, 68(2021).

    [148] S. R. Arridge, J. C. Schotland. Optical tomography: Forward and inverse problems. Inverse Probl., 25, 123010(2009).

    [149] S. R. Arridge. Optical tomography in medical imaging. Inverse Probl., 15, R41-R93(1999).

    [150] V. Nuiachristos. Fluorescence molecular imaging. Annu. Rev. Biomed. Eng., 8, 1-33(2006).

    [151] A. Ishimaru. Diffusion of light in turbid material. Appl. Opt., 28, 2210-2215(1989).

    [152] Q. Q. Fang, D. A. Boas. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Exp., 17, 20178-20190(2009).

    [153] A. B. Milstein, S. Oh, K. J. Webb et al. Fluorescence optical diffusion tomography. Appl. Opt., 42, 3081-3094(2003).

    [154] M. J. Niedre, R. H. de Kleine, E. Aikawa et al. Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo. Proc. Natl. Acad. Sci. USA, 105, 19126-19131(2008).

    [155] L. H. V. Wang. Mechanisms of ultrasonic modulation of multiply scattered coherent light: An analytic model. Phys. Rev. Lett., 87, 043903(2001).

    [156] J. Li, L. H. V. Wang. Ultrasound-modulated optical computed tomography of biological tissues. Appl. Phys. Lett., 84, 1597-1599(2004).

    [157] L. H. V. Wang, S. Hu. Photoacoustic tomography: In Vivo imaging from organelles to organs. Science, 335, 1458-1462(2012).

    [158] L. V. Wang. Multiscale photoacoustic microscopy and computed tomography. Nat Photon., 3, 503-509(2009).

    [159] P. Beard. Biomedical photoacoustic imaging. Interface Focus, 1, 602-631(2011).

    [160] H. F. Zhang, K. Maslov, G. Stoica et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol., 24, 848-851(2006).

    [161] J. Bauer-Marschallinger, T. Berer, H. Grun et al. Broadband high-frequency measurement of ultrasonic attenuation of tissues and liquids. IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 59, 2631-2645(2012).

    [162] S. Gigan. Optical microscopy aims deep. Nat. Photon., 11, 14-16(2017).

    [163] Z. Yaqoob, D. Psaltis, M. S. Feld et al. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photon., 2, 110-115(2008).

    [164] C. Moretti, S. Gigan. Readout of fluorescence functional signals through highly scattering tissue. Nat. Photon., 14, 361(2020).

    [165] J. Bertolotti, E. G. van Putten, C. Blum et al. Non-invasive imaging through opaque scattering layers. Nature, 491, 232-234(2012).

    [166] B. A. Flusberg, E. D. Cocker, W. Piyawattanametha et al. Fiber-optic fluorescence imaging. Nat. Meth., 2, 941-950(2005).

    [167] J. C. Jung, M. J. Schnitzer. Multiphoton endoscopy. Opt. Lett., 28, 902-904(2003).

    [168] H. Yoo, J. W. Kim, M. Shishkov et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat. Med., 17, 1680-1684(2011).

    [169] J. M. Yang, C. Favazza, R. M. Chen et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat. Med., 18, 1297(2012).

    [170] B. Wei, C. Wang, Z. Cheng et al. Clear optically matched panoramic access channel technique (COMPACT) for large-volume deep brain imaging. Nat. Meth., 18, 959-964(2021).

    [171] W. Spalteholz. Hand-Atlas of Human Anatomy(1898).

    [172] C. C. Pan, R. Y. Cai, F. P. Quacquarelli et al. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat. Meth., 13, 859(2016).

    [173] K. Chung, J. Wallace, S. Y. Kim et al. Structural and molecular interrogation of intact biological systems. Nature, 497, 332(2013).

    [174] T. C. Murakami, T. Mano, S. Saikawa et al. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nat. Neurosci., 21, 625(2018).

    [175] K. R. Weiss, F. F. Voigt, D. P. Shepherd et al. Tutorial: Practical considerations for tissue clearing and imaging. Nat. Protoc., 16, 2732(2021).

    [176] K. Tainaka, A. Kuno, S. I. Kubota et al. Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu. Rev. Cell. Dev. Biol., 32, 713-741(2016).

    [177] D. S. Richardson, W. Guan, K. Matsumoto et al. Tissue clearing. Nat. Rev. Meth. Primers, 1, 84(2021).

    [178] M. Pende, K. Vadiwala, H. Schmidbaur et al. A versatile depigmentation, clearing, and labeling method for exploring nervous system diversity. Sci. Adv., 6, eaba0365(2020).

    [179] D. S. Richardson, J. W. Lichtman. Clarifying tissue clearing. Cell, 162, 246-257(2015).

    [180] S. Zhao, M. I. Todorov, R. Y. Cai et al. Cellular and molecular probing of intact human organs. Cell, 180, 796(2020).

    [181] D. L. Rosene, N. J. Roy, B. J. Davis. A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. J. Histochem. Cytochem., 34, 1301-1315(1986).

    [182] K. Amunts, C. Lepage, L. Borgeat et al. BigBrain: An ultrahigh-resolution 3D human brain model. Science, 340, 1472-1475(2013).

    [183] K. D. Micheva, S. J. Smith. Array tomography: A new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron, 55, 25-36(2007).

    [184] H. Hintiryan, N. N. Foster, I. Bowman et al. The mouse cortico-striatal projectome. Nat. Neurosci., 19, 1100(2016).

    [185] F. Xu, Y. Shen, L. F. Ding et al. High-throughput mapping of a whole rhesus monkey brain at micrometer resolution. Nat. Biotechnol., 39, 1521(2021).

    [186] A. L. Wang, J. Yuan, W. H. Luo et al. Optimization of sample cooling temperature for redox cryo-imaging. J. Biomed. Opt., 19, 080502(2014).

    [187] A. W. Toga, K. L. Ambach, S. Schluender. High-resolution anatomy from in situ human brain. Neuroimage, 1, 334-344(1994).

    [188] A. A. Li, H. Gong, B. Zhang et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science, 330, 1404-1408(2010).

    [189] B. Zhang, A. A. Li, Z. Q. Yang et al. Modified Golgi-Cox method for micrometer scale sectioning of the whole mouse brain. J. Neurosci. Meth., 197, 1-5(2011).

    [190] T. Zheng, Z. Q. Yang, A. A. Li et al. Visualization of brain circuits using two-photon fluorescence micro-optical sectioning tomography. Opt. Exp., 21, 9839-9850(2013).

    [191] H. Gong, S. Q. Zeng, C. Yan et al. Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution. Neuroimage, 74, 87-98(2013).

    [192] H. Xiong, Z. Zhou, M. Zhu et al. Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging. Nat. Commun., 5, 3992(2014).

    [193] X. J. Wang, H. Q. Xiong, Y. R. Liu et al. Chemical sectioning fluorescence tomography: High-throughput, high-contrast, multicolor, whole-brain imaging at subcellular resolution. Cell Rep., 34, 108709(2021).

    [194] H. Gong, D. L. Xu, J. Yuan et al. High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level. Nat Commun., 7, 12142(2016).

    [195] M. N. Economon, N. G. Clack, L. D. Levis et al. A platform for brain-wide imaging and reconstruction of individual neurons. Elife, 5, e10566(2016).

    [196] K. Seiriki, A. Kasai, T. Hashimoto et al. High-speed and scalable whole-brain imaging in rodents and primates. Neuron, 94, 1085(2017).

    [197] X. Yang, Q. Zhang, F. Huang et al. High-throughput light sheet tomography platform for automated fast imaging of whole mouse brain. J. Biophoton., 11, e201800047(2018).

    [198] Q. Y. Zhong, A. A. Li, R. Jin et al. High-definition imaging using line-illumination modulation microscopy. Nat. Meth., 18, 309(2021).

    [199] C. Zhou, X. Q. Yang, S. A. Wu et al. Continuous subcellular resolution three-dimensional imaging on intact macaque brain. Sci. Bull., 67, 85-96(2022).

    [200] T. Jiang, B. Long, H. Gong et al. A platform for efficient identification of molecular phenotypes of brain-wide neural circuits. Sci. Rep.-UK, 7, 13891(2017).

    [201] Z. Li, Z. L. Chen, G. Q. Fan et al. Cell-type-specific afferent innervation of the nucleus accumbens core and shell. Front. Neuroanat., 12, 84(2018).

    [202] X. Li, B. Yu, Q. Sun et al. Generation of a whole-brain atlas for the cholinergic system and mesoscopic projectome analysis of basal forebrain cholinergic neurons. Proc. Natl. Acad. Sci. USA, 115, 415-420(2018).

    [203] J. Wu, C. Guo, S. Chen et al. Direct 3D analyses reveal barrel-specific vascular distribution and cross-barrel branching in the mouse barrel cortex. Cereb Cortex., 26, 23-31(2016).

    [204] Q. Zhang, A. A. Li, S. Q. Chen et al. Multiscale reconstruction of various vessels in the intact murine liver lobe. Commun. Biol., 5, 260(2022).

    [205] J. W. Chen, G. C. Liu, W. Sun et al. Three-dimensional visualization of heart-wide myocardial architecture and vascular network simultaneously at single-cell resolution. Front. Cardiovasc. Med., 9, 945198(2022).

    [206] L. Gao, S. Liu, L. F. Gou et al. Single-neuron projectome of mouse prefrontal cortex. Nat. Neurosci., 25, 515(2022).

    [207] L. Deng, J. Chen, Y. Li et al. Cryo-fluorescence micro-optical sectioning tomography for volumetric imaging of various whole organs with subcellular resolution. iScience, 25, 104805(2022).

    [208] A. T. Francis, K. Berry, E. C. Thomas et al. In vitro quantification of single red blood cell oxygen saturation by femtosecond transient absorption microscopy. J. Phys. Chem. Lett., 10, 3312-3317(2019).

    [209] E. Marder. Neuromodulation of neuronal circuits: Back to the future. Neuron, 76, 1-11(2012).

    [210] J. Zhang, R. E. Campbell, A. Y. Ting et al. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol., 3, 906-918(2002).

    [211] S. Weiss. Fluorescence spectroscopy of single biomolecules. Science, 283, 1676-1683(1999).

    [212] V. Iyer, B. E. Losavio, P. Saggau. Compensation of spatial and temporal dispersion for acousto-optic multiphoton laser-scanning microscopy. J. Biomed. Opt., 8, 460-471(2003).

    [213] M. B. Bouchard, V. Voleti, C. S. Mendes et al. Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nat. Photon., 9, 113-119(2015).

    [214] S. Kang, M. Duocastella, C. B. Arnold. Variable optical elements for fast focus control. Nat. Photon., 14, 533-542(2020).

    [215] J. T. Fan, J. L. Suo, J. M. Wu et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution. Nat. Photon., 13, 809(2019).

    [216] O. I. Rumyantsev, J. A. Lecoq, O. Hernandez et al. Fundamental bounds on the fidelity of sensory cortical coding. Nature, 580, 100(2020).

    [217] B. Hulsken, D. Vossen, S. Stallinga. High NA diffractive array illuminators and application in a multi-spot scanning microscope. J. Eur. Opt. Soc-Rapid., 7, 2026(2012).

    [218] L. Gao, L. H. V. Wang. A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel. Phys. Rep., 616, 1-37(2016).

    [219] M. Weigert, U. Schmidt, T. Boothe et al. Content-aware image restoration: Pushing the limits of fluorescence microscopy. Nat. Meth., 15, 1090(2018).

    [220] S. Ota, R. Horisaki, Y. Kawamura et al. Ghost cytometry. Science, 360, 1246-1251(2018).

    [221] S. Vilov, G. Godefroy, B. Arnal et al. Photoacoustic fluctuation imaging: Theory and application to blood flow imaging. Optica, 7, 1495-1505(2020).

    [222] J. Kim, J. Y. Kim, S. Jeon et al. Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers. Light. Sci. Appl., 8, 103(2019).

    [223] R. Horstmeyer, H. W. Ruan, C. H. Yang. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photon., 9, 563-571(2015).

    [224] K. Amunts, H. Mohlberg, S. Bludau et al. Julich-Brain: A 3D probabilistic atlas of the human brain’s cytoarchitecture. Science, 369, 988(2020).

    [225] S. L. Ding, J. J. Royall, S. M. Sunkin et al. Comprehensive cellular-resolution atlas of the adult human brain. J. Comp. Neurol., 524, 3127-3481(2016).

    [226] B. C. Chen, W. R. Legant, K. Wang et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science, 346, 439(2014).

    [227] T. A. Planchon, L. Gao, D. E. Milkie et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Meth., 8, 417-423(2011).

    [228] N. Wagner, F. Beuttenmueller, N. Norlin et al. Deep learning-enhanced light-field imaging with continuous validation. Nat. Meth., 18, 557(2021).

    [229] J. M. Wu, Z. Lu, D. Jiang et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell, 184, 3318(2021).

    [230] J. Rosen, G. Brooker. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat. Photon., 2, 190-195(2008).

    [231] B. Javidi, A. Carnicer, A. Anand et al. Roadmap on digital holography. Opt. Exp., 29, 35078-35118(2021).

    [232] K. Heinzmann, L. M. Carter, J. S. Lewis et al. Multiplexed imaging for diagnosis and therapy. Nat. Biomed. Eng., 1, 697-713(2017).

    [233] Q. L. Li, X. F. He, Y. T. Wang et al. Review of spectral imaging technology in biomedical engineering: Achievements and challenges. J. Biomed. Opt., 18, 100901(2013).

    [234] J. H. Shi, T. T. W. Wong, Y. He et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy. Nat. Photon., 13, 609(2019).

    [235] H. H. Tu, Y. Liu, D. Turchinovich et al. Stain-free histopathology by programmable supercontinuum pulses. Nat. Photon., 10, 534(2016).

    [236] H. Takemura, N. Palomero-Gallagher, M. Axer et al. Anatomy of nerve fiber bundles at micrometer-resolution in the vervet monkey visual system. Elife, 9, e55444(2020).

    [237] C. L. Walsh, P. Tafforeau, W. L. Wagner et al. Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography. Nat. Meth., 18, 1532(2021).

    [238] D. Schulz, S. Southekal, S. S. Junnarkar et al. Simultaneous assessment of rodent behavior and neurochemistry using a miniature positron emission tomograph. Nat. Meth., 8, 347-352(2011).

    [239] P. L. Stahl, F. Salmen, S. Vickovic et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science, 353, 78-82(2016).

    [240] R. Van de Plas, J. H. Yang, J. Spraggins et al. Image fusion of mass spectrometry and microscopy: A multimodality paradigm for molecular tissue mapping. Nat. Meth., 12, 366-372(2015).

    [241] H. Y. Zhu, G. C. Zou, N. Wang et al. Single-neuron identification of chemical constituents, physiological changes, and metabolism using mass spectrometry. Proc. Natl. Acad. Sci. USA, 114, 2586-2591(2017).

    Tools

    Get Citation

    Copy Citation Text

    Xiaoquan Yang, Tao Jiang, Lirui Liu, Xiaojun Zhao, Ximiao Yu, Minjun Yang, Guangcai Liu, Qingming Luo. Observing single cells in whole organs with optical imaging[J]. Journal of Innovative Optical Health Sciences, 2023, 16(1): 2330002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 13, 2022

    Accepted: Dec. 14, 2022

    Published Online: Feb. 21, 2023

    The Author Email: Qingming Luo (qluo@hainanu.edu.cn)

    DOI:10.1142/S1793545823300021

    Topics