Laser & Optoelectronics Progress, Volume. 60, Issue 12, 1210012(2023)

Hyperspectral Image Classification Based on Dual-Channel Feature Enhancement

Li Zhao1, Leiquan Wang1, Junsan Zhang1、*, Zhimin Shao2, and Jie Zhu3
Author Affiliations
  • 1College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, Shandong, China
  • 2State Grid Shandong Electric Power Company, Jinan 250003, Shandong, China
  • 3Department of Information Management, the National Police University for Criminal Justice, Baoding 071000, Hebei, China
  • show less
    Figures & Tables(24)
    3D-CNN with batch normalization
    Architecture diagram of CA
    Multiple-branch construction
    Structure of multi-branch block
    DCFE network structure
    Classification result diagrams of IP dataset. (a) Ground truth; (b)-(g) classification results of different methods
    Classification result diagrams of UP dataset. (a) Ground-truth; (b)-(g) classification results of different methods
    Classification result diagram of SV dataset. (a) Ground-truth; (b)-(g) classification results of different methods
    Classification result diagram of BS dataset. (a) Ground-truth; (b)-(g) classification results of different methods
    • Table 1. Implementation of spectral-channel

      View table

      Table 1. Implementation of spectral-channel

      Layer nameKernel sizeOutput size
      Input(11×11×200)
      Conv(1×1×7)(11×11×97,24)
      Spectral block(1×1×7)(11×11×97,24)
      BN-Mish-Conv(1×1×97)(11×11×1,24)
    • Table 2. Implementation of spatial-channel

      View table

      Table 2. Implementation of spatial-channel

      Layer nameKernel sizeOutput size
      Input(11×11×200)
      Conv(1×1×200)(11×11×1,24)
      Spatial block(3×3×1)(11×11×1,24)
    • Table 3. Implementation of classification module

      View table

      Table 3. Implementation of classification module

      Layer nameKernel sizeOutput size
      Concatenate(11×11×1,48)
      Attention block(11×11×1,48)
      BN-Mish-dropout-GAP(1×48)
      Fully connected(1×16)
    • Table 4. Samples for each category of training, validation, and testing for IP dataset

      View table

      Table 4. Samples for each category of training, validation, and testing for IP dataset

      OrderClassNumberTraining setVerification setTest set
      Total102493073079635
      1alfalfa463340
      2corn-notill142842421344
      3corn-mintill8302424782
      4corn23777223
      5grass-pasture4831414455
      6grass-trees7302121688
      7grass-pasture-mowed283322
      8hay-windrowed4781414450
      9oats203314
      10soybean-notill9722929914
      11soybean-mintill245573732309
      12soybean-clean5931717559
      13wheat20566193
      14woods126537371191
      15buildings-grass-tree-drives3861111364
      16stone-steel-towers933387
    • Table 5. Samples for each category of training, validation, and testing for UP dataset

      View table

      Table 5. Samples for each category of training, validation, and testing for UP dataset

      OrderClassNumberTraining setVerification setTest set
      Total4277621021042356
      1asphalt663133336465
      2meadows18649939318463
      3gravel209910102079
      4corn306415153034
      5trees1345661333
      6bare soil502925254979
      7bitumen1330661318
      8self-blocking bricks368218183646
      9shadows94744939
    • Table 6. Samples for each category of training, validation, and testing for SV dataset

      View table

      Table 6. Samples for each category of training, validation, and testing for SV dataset

      OrderClassNumberTraining setVerification setTest set
      Total5412926326353603
      1brocoli-green-weeds-1200910101989
      2brocoli-green-weeds-2372618183690
      3fallow1976991958
      4fallow-rough-plow1394661382
      5fallow-smooth267813132652
      6stubble395919193921
      7celery357917173545
      8grapes-untrained11271565611159
      9soil-vinyard-develop620331316141
      10corn-senesced-green-weeds327816163246
      11lettuce-romaine-4wk1068551058
      12lettuce-romaine-5wk1927991909
      13lettuce-romaine-6wk91644908
      14lettuce-romaine-7wk1070551060
      15vinyard-untrained726836367196
      16vinyard-vertical-trellis1807991789
    • Table 7. Samples for each category of training, validation, and testing for BS dataset

      View table

      Table 7. Samples for each category of training, validation, and testing for BS dataset

      OrderClassNumberTraining setVerification setTest set
      Total324840403168
      1water27033264
      2hippo grass1012297
      3floodplain grasses 125133245
      4floodplain grasses 221533209
      5reeds 126933263
      6riparian26933263
      7fierscar 225933253
      8island interior20333197
      9acacia woodlands31444306
      10acacia shrublands24833242
      11acacia grasslands30544297
      12short mopane18122177
      13mixed mopane26933263
      14exposed soils951193
    • Table 8. Classification results of IP dataset of 3% training samples

      View table

      Table 8. Classification results of IP dataset of 3% training samples

      ClassColorSVMSSRNFDSSCDBMADBDADCFE
      1 /%24.1967.3997.7261.7687.50100
      2 /%56.7184.5898.7492.3094.2298.13
      3 /%65.0992.4997.3197.9398.3294.61
      4 /%39.6391.3797.2096.1598.1896.81
      5 /%87.3399.0499.5398.0010097.63
      6 /%83.8796.1892.8394.8696.3495.91
      7 /%57.208810052.9483.3390.90
      8 /%89.2895.7010010010097.59
      9 /%22.5857.1488.8850.00100100
      10 /%66.7078.3388.9295.5291.1694.77
      11 /%62.5095.8399.2395.9997.4796.84
      12 /%51.8685.5797.1686.8997.6195.63
      13 /%94.7991.8698.9010097.95100
      14 /%90.4291.9093.4492.8195.8696.88
      15 /%62.8290.7695.9290.9393.6796.24
      16 /%98.4610092.3092.2292.3093.18
      OA /%69.3590.5296.1493.1496.1996.57
      AA /%65.8687.8896.1586.7795.2496.57
      Kappa /%64.6589.2195.4492.1895.6596.09
      Training time /s12.2356.06132.43108.6778.9675.41
      Test time /s1.393.395.657.686.837.33
    • Table 9. Classification results of UP dataset of 0.5% training samples

      View table

      Table 9. Classification results of UP dataset of 0.5% training samples

      ClassColorSVMSSRNFDSSCDBMADBDADCFE
      1 /%80.2694.8198.8893.6796.2496.49
      2 /%86.9498.5098.8296.3499.2399.26
      3 /%71.1310010099.0299.8799.44
      4 /%96.4410091.7497.4398.2098.78
      5 /%90.8599.3299.9299.5599.9299.92
      6 /%77.0293.4399.6198.6798.0699.97
      7 /%69.7095.9610098.5010099.21
      8 /%67.3075.8784.0282.4884.1191.19
      9 /%99.8999.6899.6696.8810099.33
      OA /%83.0794.8597.0295.0697.1198.15
      AA /%82.2495.2896.9695.8497.2998.18
      Kappa /%77.0793.1796.0493.4096.1797.54
      Training time /s5.3212.0632.1629.8321.8820.12
      Test time /s2.195.2113.2213.5211.2512.10
    • Table 10. Classification results of SV dataset of 0.5% training samples

      View table

      Table 10. Classification results of SV dataset of 0.5% training samples

      ClassColorSVMSSRNFDSSCDBMADBDADCFE
      1 /%99.84100100100100100
      2 /%98.9510097.2010097.84100
      3 /%89.8794.3599.5899.5796.92100
      4 /%97.3095.6396.9190.2697.7194.33
      5 /%93.5599.4010097.6699.26100
      6 /%99.7910099.7410099.9799.77
      7 /%91.3399.4610091.9099.88100
      8 /%74.7389.1495.1595.6296.5397.32
      9 /%97.6999.5189.3199.6998.76100
      10 /%90.0197.7598.1797.3897.7099.28
      11 /%75.9292.9793.1781.7695.4095.49
      12 /%95.1999.6398.3595.9399.79100
      13 /%94.8699.8810099.88100100
      14 /%89.2698.0495.9297.6296.0097.78
      15 /%75.8587.9591.9489.9794.4799.03
      16 /%99.03100100100100100
      OA /%88.0995.3595.8595.9097.7098.95
      AA /%91.4597.1197.2196.0898.1498.93
      Kappa /%86.7094.8295.3895.4497.4498.83
      Training time /s10.2785.65123.14146.2882.3380.56
      Test time /s4.1216.3231.0542.5625.6723.66
    • Table 11. Classification results of BS dataset of 1.2% training samples

      View table

      Table 11. Classification results of BS dataset of 1.2% training samples

      ClassColorSVMSSRNFDSSCDBMADBDADCFE
      1 /%10010083.9596.3395.9793.26
      2 /%70.7095.8378.4010098.0095.14
      3 /%84.1010095.57100100100
      4 /%65.9581.1882.8289.4085.7786.12
      5 /%82.6284.5510099.4598.9692.30
      6 /%65.7193.2462.1180.1887.0495.45
      7 /%78.7794.7598.8284.3310096.93
      8 /%65.8797.5110010099.49100
      9 /%75.1881.7410010091.04100
      10 /%69.8210097.6099.1810097.99
      11 /%95.4910099.0099.32100100
      12 /%93.1010093.1294.62100100
      13 /%76.25100100100100100
      14 /%90.41100100100100100
      OA /%78.6394.2790.8094.8796.3996.83
      AA /%79.5794.9192.4595.9196.8796.94
      Kappa /%76.8793.7990.0394.4596.0996.57
      Training time /s1.6510.2522.3520.8818.6519.39
      Test time /s0.412.012.373.022.112.04
    • Table 12. OA for different proportions of training samples in IP

      View table

      Table 12. OA for different proportions of training samples in IP

      Algorithm0.5%1%3%5%10%
      SVM48.5355.9569.3574.7480.55
      SSRN64.9981.4090.520.95597.84
      FDSSC70.7584.7196.1497.2198.02
      DBMA59.3377.6493.1493.7596.91
      DBDA56.9778.8196.1996.5897.55
      DCFE74.1086.5496.5797.8398.34
    • Table 13. OA for different proportions of training samples in UP

      View table

      Table 13. OA for different proportions of training samples in UP

      Algorithm0.1%0.5%1%3%5%
      SVM70.5983.0788.4590.3593.29
      SSRN78.3294.8597.1199.4399.69
      FDSSC88.9797.0297.7499.5099.58
      DBMA89.8795.0696.3799.1099.49
      DBDA88.0197.1198.4099.0799.33
      DCFE90.7998.1598.6699.9999.99
    • Table 14. OA for different proportions of training samples in SV

      View table

      Table 14. OA for different proportions of training samples in SV

      Algorithm0.1%0.5%1%3%5%
      SVM78.6588.0989.8991.2492.47
      SSRN67.2295.3596.3297.2398.14
      FDSSC88.8395.8596.4897.5298.85
      DBMA92.1595.9096.6697.6298.21
      DBDA94.2397.7098.3198.9599.36
      DCFE95.7098.9599.2599.8199.98
    • Table 15. OA for different proportions of training samples in BS

      View table

      Table 15. OA for different proportions of training samples in BS

      Algorithm0.5%1.2%3%5%10%
      SVM73.5378.6387.8289.0692.76
      SSRN84.0794.2795.5298.1999.15
      FDSSC87.9890.8096.3397.2499.46
      DBMA93.3694.8795.8898.0199.04
      DBDA96.2796.3997.3898.6499.33
      DCFE96.6696.8399.2499.6299.80
    Tools

    Get Citation

    Copy Citation Text

    Li Zhao, Leiquan Wang, Junsan Zhang, Zhimin Shao, Jie Zhu. Hyperspectral Image Classification Based on Dual-Channel Feature Enhancement[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1210012

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: May. 17, 2022

    Accepted: Jun. 16, 2022

    Published Online: Jun. 5, 2023

    The Author Email: Junsan Zhang (zhangjunsan@upc.edu.cn)

    DOI:10.3788/LOP221628

    Topics