Optics and Precision Engineering, Volume. 32, Issue 6, 857(2024)
RGB-D SLAM method of dynamic scene based on instance segmentation and optical flow
[1] [1] 张裕, 张越, 张宁, 等. 基于逆深度滤波的双目折反射全景相机动态SLAM系统[J]. 光学 精密工程, 2022, 30(11): 1282-1289. doi: 10.37188/ope.20223011.1282ZHANGY, ZHANGY, ZHANGN, et al. Dynamic SLAM of binocular catadioptric panoramic camera based on inverse depth filter[J]. Opt. Precision Eng., 2022, 30(11): 1282-1289.(in Chinese). doi: 10.37188/ope.20223011.1282
[2] [2] 郭道亮. 可变形物体的全局非刚性配准与重建[D]. 天津: 天津大学, 2018.GUOD L. Global Non-Rigid Registration and Reconstruction of Deformable Objects[D]. Tianjin: Tianjin University, 2018. (in Chinese)
[3] NEWCOMBE R A, SEITZ S M. DynamicFusion: reconstruction and tracking of non-rigid scenes in real-time[C], 343-352(2015).
[4] [4] 刘东生, 陈建林, 费点, 等. 基于深度相机的大场景三维重建[J]. 光学 精密工程, 2020, 28(1): 234-243. doi: 10.3788/ope.20202801.0234LIUD S, CHENJ L, FEID, et al. Three-dimensional reconstruction of large-scale scene based on depth camera[J]. Opt. Precision Eng., 2020, 28(1): 234-243.(in Chinese). doi: 10.3788/ope.20202801.0234
[5] MUR-ARTAL R, TARDÓS J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 33, 1255-1262(2017).
[6] MUR-ARTAL R, MONTIEL J M M, TARDÓS J D. ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 31, 1147-1163(2015).
[7] CAMPOS C, ELVIRA R, RODRÍGUEZ J J G et al. ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 37, 1874-1890(2021).
[8] ANDUAGA XS, ANTONELLI S et al. The ATLAS experiment at the CERN large hadron collider[J](2008).
[9] GIRSHICK R, DONAHUE J, DARRELL T et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C], 580-587(2014).
[10] HE K M, GKIOXARI G, DOLLÁR P et al. Mask R-CNN[C], 2980-2988(2017).
[11] REN S Q, HE K M, GIRSHICK R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[13] WANG X L, KONG T, SHEN C H et al.
[14] SUN D Q, YANG X D, LIU M Y et al. PWC-net: CNNs for optical flow using pyramid, warping, and cost volume[C], 8934-8943(2018).
[15] TEED Z, DENG J.
[17] IZADI S, KIM D, HILLIGES O et al. KinectFusion: Real-Time 3D reconstruction and interaction using a moving depth camera[C], 559-568(2011).
[18] NEWCOMBE R A, IZADI S, HILLIGES O et al. KinectFusion: Real-Time dense surface mapping and tracking[C], 127-136(2011).
[19] NIEßNER M, ZOLLHÖFER M, IZADI S et al. Real-time 3D reconstruction at scale using voxel hashing[J]. ACM Transactions on Graphics, 32, 1-11(2013).
[20] RUNZ M, BUFFIER M, AGAPITO L. MaskFusion: Real-Time recognition, tracking and reconstruction of multiple moving objects[C], 10-20(2018).
[21] WHELAN T, LEUTENEGGER S, SALAS MORENO R et al. ElasticFusion: dense SLAM without a pose graph[C], 11(2015).
[22] BESCOS B, FÁCIL J M, CIVERA J et al. DynaSLAM: tracking, mapping, and inpainting in dynamic scenes[J]. IEEE Robotics and Automation Letters, 3, 4076-4083(2018).
[23] XU B B, LI W B, TZOUMANIKAS D et al. MID-Fusion: octree-based object-level multi-instance dynamic SLAM[C], 5231-5237(2019).
[24] RUSINKIEWICZ S, LEVOY M. Efficient variants of the ICP algorithm[C], 145-152(2002).
[25] WU W X, GUO L, GAO H L et al. YOLO-SLAM: a semantic SLAM system towards dynamic environment with geometric constraint[J]. Neural Computing and Applications, 34, 6011-6026(2022).
[26] KIM D S, FIGUEROA K W, LI K W et al. Profiling of dynamically changed gene expression in dorsal root Ganglia post peripheral nerve injury and a critical role of injury-induced glial fibrillary acidic protein in maintenance of pain behaviors[J]. Pain, 143, 114-122(2009).
[27] ALCANTARILLA P F, YEBES J J, ALMAZÁN J et al. On combining visual SLAM and dense scene flow to increase the robustness of localization and mapping in dynamic environments[C], 1290-1297(2012).
[28] ZHANG T W, ZHANG H Y, LI Y et al. FlowFusion: dynamic dense RGB-D SLAM based on optical flow[C], 7322-7328(2020).
[29] LIN W B, ZHENG C W, YONG J H et al. OcclusionFusion: occlusion-aware motion estimation for real-time dynamic 3D reconstruction[C], 1726-1735(2022).
[30] SCARSELLI F, GORI M, TSOI A C et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 20, 61-80(2009).
[31] BUJANCA M, LENNOX B, LUJÁN M. ACEFusion-accelerated and energy-efficient semantic 3D reconstruction of dynamic scenes[C], 11063-11070(2022).
[32] STURM J, ENGELHARD N, ENDRES F et al. A benchmark for the evaluation of RGB-D SLAM Systems[C], 573-580(2012).
[33] PALAZZOLO E, BEHLEY J, LOTTES P et al. ReFusion: 3D Reconstruction in dynamic environments for RGB-D cameras exploiting residuals[C], 7855-7862(2019).
[34] LORENSEN W E, CLINE H E. Marching cubes: a high resolution 3D surface construction algorithm[J]. ACM SIGGRAPH Computer Graphics, 21, 163-169(1987).
[36] SCONA R, JAIMEZ M, PETILLOT Y R et al. StaticFusion: background reconstruction for dense RGB-D SLAM in dynamic environments[C], 3849-3856(2018).
[37] WONG Y S, LI C J, NIEßNER M et al. RigidFusion: RGB-D scene reconstruction with rigidly-moving objects[J]. Computer Graphics Forum, 40, 511-522(2021).
Get Citation
Copy Citation Text
Chenggen WANG, Jinlong SHI, Haowei ZHU, Suqin BAI, Yunhan SUN, Jiawen LU, Shucheng HUANG. RGB-D SLAM method of dynamic scene based on instance segmentation and optical flow[J]. Optics and Precision Engineering, 2024, 32(6): 857
Category:
Received: Sep. 7, 2023
Accepted: --
Published Online: Apr. 19, 2024
The Author Email: Jinlong SHI (shi_jinlong@163. com)