Journal of Innovative Optical Health Sciences, Volume. 18, Issue 5, 2530009(2025)
Near-infrared optical imaging for intraoperative identification and assessment of parathyroid glands
[1] A. Bergenfelz, E. Nordenstrom, M. Almquist. Morbidity in patients with permanent hypoparathyroidism after total thyroidectomy. Surgery, 167, 124-128(2020).
[2] M. Anneback, J. Hedberg, M. Almquist, P. Stalberg, O. Norlen. Risk of permanent hypoparathyroidism after total thyroidectomy for benign disease; A nationwide population-based cohort study from sweden. Ann. Surg., 274, e1202-e1208(2021).
[3] M. Almquist, K. Ivarsson, E. Nordenström, A. Bergenfelz. Mortality in patients with permanent hypoparathyroidism after total thyroidectomy. Br. J. Surg., 105, 1313-1318(2018).
[4] N. Christou, M. Mathonnet. Complications after total thyroidectomy. J. Visc. Surg., 150, 249-256(2013).
[5] I. G. Mazotas, T. W. F. Yen, K. Doffek, J. L. Shaker, A. A. Carr, D. B. Evans, T. S. Wang. Persistent/recurrent primary hyperparathyroidism: Does the number of abnormal glands play a role?. J. Surg. Res., 246, 335-341(2020).
[6] R. Udelsman, P. Donovan, C. Shaw. Cure predictability during parathyroidectomy. World J. Surg., 38, 525-533(2014).
[7] D. A. Novis, R. J. Zarbo. Interinstitutional comparison of frozen section turnaround time — a college of American pathologists q-probes study of 32,868 frozen sections in 700 hospitals. Arch. Pathol. Lab. Med., 121, 559-567(1997).
[8] D. T. Broome, R. Naples, R. Bailey, Z. Tekin, M. Hamidi, J. F. Bena, S. L. Morrison, E. Berber, A. E. Siperstein, J. Scharpf, M. Skugor. Use of preoperative imaging in primary hyperparathyroidism. J. Clin. Endocrinol. Metab., 106, e328-e337(2021).
[9] S. J. Brown, J. C. Lee, J. Christie, R. Maher, S. B. Sidhu, M. S. Sywak, L. W. Delbridge. Four-dimensional computed tomography for parathyroid localization: A new imaging modality. ANZ J. Surg., 85, 483-487(2015).
[10] F. Karipineni, Z. Sahli, H. Somervell, A. Mathur, J. D. Prescott, R. P. Tufano, M. A. Zeiger. Are preoperative sestamibi scans useful for identifying ectopic parathyroid glands in patients with expected multigland parathyroid disease?. Surgery, 163, 35-40(2018).
[11] A. Hauch, Z. AL-Qurayshi, G. Randolph, E. Kandil. Total thyroidectomy is associated with increased risk of complications for low- and high-volume surgeons. Ann. Surg. Oncol., 21, 3844-3852(2014).
[12] L. A. Orloff, S. M. Wiseman, V. J. Bernet, T. J. Fahey III,, A. R. Shaha, M. L. Shindo, S. K. Snyder, B. C. Stack, J. B. Sunwoo, M. B. Wang. American thyroid association statement on postoperative hypoparathyroidism: Diagnosis, prevention, and management in adults. Thyroid, 28, 830-841(2018).
[13] Y. Chen, S. Wang, F. Zhang. Near-infrared luminescence high-contrast in vivo biomedical imaging. Nat. Rev. Bioeng., 1, 60-78(2023).
[14] S. Sajedi, H. Sabet, H. S. Choi. Intraoperative biophotonic imaging systems for image-guided interventions. Nanophotonics, 8, 99-116(2019).
[15] A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. H. van de Velde, J. V. Frangioni. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol., 10, 507-518(2013).
[16] F. Wang, Y. Zhong, O. Bruns, Y. Liang, H. Dai. In vivo nir-ii fluorescence imaging for biology and medicine. Nat. Photonics, 18, 535-547(2024).
[17] E. L. Schmidt, Z. Ou, E. Ximendes, H. Cui, C. H. C. Keck, D. Jaque, G. Hong. Near-infrared ii fluorescence imaging. Nat. Rev. Methods Primers, 4, 23(2024).
[18] N. M. Htun, Y. C. Chen, B. Lim, T. Schiller, G. J. Maghzal, A. L. Huang, K. D. Elgass, J. Rivera, H. G. Schneider, B. R. Wood, R. Stocker, K. Peter. Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques. Nat. Commun., 8, 75(2017).
[19] G. Hong, A. L. Antaris, H. Dai. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng., 1, 0010(2017).
[20] D. Gray, E. Kim, V. Cotero, P. Staudinger, S. Yazdanfar, C. T. Hehir. A compact fluorescence and white light imaging system for intraoperative visualization of nerves. Proc. SPIE, 8207, 82074Z(2012).
[21] S. Keereweer, J. D. F. Kerrebijn, P. B. A. A. van Driel, B. Xie, E. L. Kaijzel, T. J. A. Snoeks, I. Que, M. Hutteman, J. R. van der Vorst, J. S. D. Mieog, A. L. Vahrmeijer, C. J. H. van de Velde, R. J. B. de Jong, C. W. G. M. Lowik. Optical image-guided surgery-where do we stand?. Mol. Imaging Biol., 13, 199-207(2011).
[22] M. D. Jafari, K. H. Lee, W. J. Halabi, S. D. Mills, J. C. Carmichael, M. J. Stamos, A. Pigazzi. The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg. Endosc., 27, 3003-3008(2013).
[23] G. Oh, S. W. Yoo, Y. Jung, Y. M. Ryu, Y. Park, S.-Y. Kim, K. H. Kim, S. Kim, S. J. Myung, E. Chung. Intravital imaging of mouse colonic adenoma using mmp-based molecular probes with multi-channel fluorescence endoscopy. Biomed. Opt. Express, 5, 1677-1689(2014).
[24] G. M. van Dam, G. Themelis, L. M. A. Crane, N. J. Harlaar, R. G. Pleijhuis, W. Kelder, A. Sarantopoulos, J. S. de Jong, H. J. G. Arts, A. G. J. van der Zee, J. Bart, P. S. Low, V. Ntziachristos. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: First in-human results. Nat. Med., 17, 1315-1319(2011).
[25] L. M. A. Crane, G. Themelis, R. G. Pleijhuis, N. J. Harlaar, A. Sarantopoulos, H. J. G. Arts, A. G. J. van der Zee, N. Vasilis, G. M. van Dam. Intraoperative multispectral fluorescence imaging for the detection of the sentinel lymph node in cervical cancer: A novel concept. Mol. Imaging Biol., 13, 1043-1049(2011).
[26] C. Chi, J. Ye, H. Ding, D. He, W. Huang, G. J. Zhang, J. Tian. Use of indocyanine green for detecting the sentinel lymph node in breast cancer patients: From preclinical evaluation to clinical validation. Plos One, 8, e83927(2013).
[27] C. Paras, M. Keller, L. White, J. Phay, A. Mahadevan-Jansen. Near-infrared autofluorescence for the detection of parathyroid glands. J. Biomed. Opt., 16, 067012(2011).
[28] S. L. Troyan, V. Kianzad, S. L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, J. V. Frangioni. The flareTM intraoperative near-infrared fluorescence imaging system: A first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann. Surg. Oncol., 16, 2943-2952(2009).
[29] J. S. D. Mieog, S. L. Troyan, M. Hutteman, K. J. Donohoe, J. R. van der Vorst, A. Stockdale, G. J. Liefers, H. S. Choi, S. L. Gibbs-Strauss, H. Putter, S. Gioux, P. J. K. Kuppen, Y. Ashitate, C. W. G. M. Lowik, V. T. H. B. M. Smit, R. Oketokoun, L. H. Ngo, C. J. H. van de Velde, J. V. Frangioni, A. L. Vahrmeijer. Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer. Ann. Surg. Oncol., 18, 2483-2491(2011).
[30] N. Yokoyama, T. Otani, H. Hashidate, C. Maeda, T. Katada, N. Sudo, S. Manabe, Y. Ikeno, A. Toyoda, N. Katayanagi. Real-time detection of hepatic micrometastases from pancreatic cancer by intraoperative fluorescence imaging preliminary results of a prospective study. Cancer, 118, 2813-2819(2012).
[31] M. E. Dindere, A. Tanca, M. Rusu, E. A. Liehn, O. Bucur. Intraoperative tumor detection using pafolacianine. Int. J. Mol. Sci., 23, 12842(2022).
[32] M. J. Whitley, D. M. Cardona, A. L. Lazarides, I. Spasojevic, J. M. Ferrer, J. Cahill, C. L. Lee, M. Snuderl, D. G. Blazer III, E. S. Hwang, R. A. Greenup, P. J. Mosca, J. K. Mito, K. C. Cuneo, N. A. Larrier, E. K. O’Reilly, R. F. Riedel, W. C. Eward, D. B. Strasfeld, D. Fukumura, R. K. Jain, W. D. Lee, L. G. Griffith, M. G. Bawendi, D. G. Kirsch, B. E. Brigman. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci. Transl. Med., 8, 320ra4(2016).
[33] J. A. Carr, D. Franke, J. R. Caram, C. F. Perkinson, M. Saif, V. Askoxylakis, M. Datta, D. Fukumura, R. K. Jain, M. G. Bawendi, O. T. Bruns. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl. Acad. Sci. USA, 115, 4465-4470(2018).
[34] Z. Hu, C. Fang, B. Li, Z. Zhang, C. Cao, M. Cai, S. Su, X. Sun, X. Shi, C. Li, T. Zhou, Y. Zhang, C. Chi, P. He, X. Xia, Y. Chen, S. S. Gambhir, Z. Cheng, J. Tian. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-i/ii windows. Nat. Biomed. Eng., 4, 259-271(2020).
[35] Y. Wu, Y. Suo, Z. Wang, Y. Yu, S. Duan, H. Liu, B. Qi, C. Jian, X. Hu, D. Zhang, A. Yu, Z. Cheng. First clinical applications for the NIR-II imaging with ICG in microsurgery. Front. Bioeng. Biotechnol., 10, 1042546(2022).
[36] J. A. Carr, T. A. Valdez, O. T. Bruns, M. G. Bawendi. Using the shortwave infrared to image middle ear pathologies. Proc. Natl. Acad. Sci. USA, 113, 9989-9994(2016).
[37] C. Gregory, A. Hilton, K. Violette, E. J. D. Klem. Colloidal quantum dot photodetectors for large format NIR, SWIR, and eSWIR imaging arrays,. SID Symp. Dig. Tech. Pap., 52, 982-986(2021).
[38] J. F. Cheng, X. Li, X. M. Shao, T. Li, Y. J. Ma, Y. Gu, S. Y. Deng, Y. G. Zhang, H. M. Gong. 2.45-μm 1280×1024 ingaas focal plane array with 15-μm pitch for extended swir imaging. IEEE Photon. Technol. Lett., 34, 231-234(2022).
[39] F. Wang, F. Ren, Z. Ma, L. Qu, R. Gourgues, C. Xu, A. Baghdasaryan, J. Li, I. E. Zadeh, J. W. N. Los, A. Fognini, J. Qin-Dregely, H. Dai. In vivo non-invasive confocal fluorescence imaging beyond 1700 nm using superconducting nanowire single-photon detectors. Nat. Nanotechnol., 17, 653-660(2022).
[40] S. L. Hillary, S. Guillermet, N. J. Brown, S. P. Balasubramanian. Use of methylene blue and near-infrared fluorescence in thyroid and parathyroid surgery. Langenbecks Arch. Surg., 403, 111-118(2018).
[41] S. Zhu, S. Herraiz, J. Yue, M. Zhang, H. Wan, Q. Yang, Z. Ma, Y. Wang, J. He, A. L. Antaris, Y. Zhong, S. Diao, Y. Feng, Y. Zhou, K. Yu, G. Hong, Y. Liang, A. J. Hsueh, H. Dai. 3d NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates. Adv. Mater., 30, e1705799(2018).
[42] Y. Lai, Y. Dang, Q. Sun, J. Pan, H. Yu, W. Zhang, Z. Xu. Design of an activatable NIR-II nanoprobe for the in vivo elucidation of Alzheimer’s disease-related variations in methylglyoxal concentrations. Chem. Sci., 13, 12511-12518(2022).
[43] S. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, H. Dai. Molecular imaging of biological systems with a clickable dye in the broad 800- to 1700-nm near-infrared window. Proc. Natl. Acad. Sci. USA, 114, 962-967(2017).
[44] B. Kahramangil, F. Dip, F. Benmiloud, J. Falco, M. de La Fuente, S. Verna, R. Rosenthal, E. Berber. Detection of parathyroid autofluorescence using near-infrared imaging: A multicenter analysis of concordance between different surgeons. Ann. Surg. Oncol., 25, 957-962(2018).
[45] J. Falco, F. Dip, P. Quadri, M. de la Fuente, M. Prunello, R. J. Rosenthal. Increased identification of parathyroid glands using near infrared light during thyroid and parathyroid surgery. Surg. Endosc., 31, 3737-3742(2017).
[46] F. De Leeuw, I. Breuskin, M. Abbaci, O. Casiraghi, H. Mirghani, A. Ben Lakhdar, C. Laplace-Builhé, D. Hartl. Intraoperative near-infrared imaging for parathyroid gland identification by auto-fluorescence: A feasibility study. World J. Surg., 40, 2131-2138(2016).
[47] G. Thomas, M. H. Squires, T. Metcalf, A. Mahadevan-Jansen, J. E. Phay. Imaging or fiber probe-based approach? Assessing different methods to detect near infrared autofluorescence for intraoperative parathyroid identification. J. Am. Coll. Surg., 229, 596-608.e3(2019).
[48] P. Makovac, M. Muradbegovic, T. Mathieson, M. S. Demarchi, F. Triponez. Preliminary experience with the Elevision IR system in detection of parathyroid glands autofluorescence and perfusion assessment with ICG. Front. Endocrinol., 13, 1030007(2022).
[49] M. A. McWade, C. Paras, L. M. White, J. E. Phay, A. Mahadevan-Jansen, J. T. Broome. A novel optical approach to intraoperative detection of parathyroid glands. Surgery, 154, 1371-1377(2013).
[50] C. Serra, J. Serra, I. L. Ferreira Machado, L. F. Vieira Ferreira. Spectroscopic analysis of parathyroid and thyroid tissues by ground-state diffuse reflectance and laser induced luminescence: A preliminary report. J. Fluoresc., 31, 1235-1239(2021).
[51] G. Thomas, M. A. McWade, M. E. Sanders, C. C. Solórzano, W. H. McDonald, A. Mahadevan-Jansen,. Identifying the novel endogenous near-infrared fluorophore within parathyroid and other endocrine tissues. Proc. Opt. Tomogr. Spectrosc., 1, PTu3A.5(2016).
[52] E. C. Moore, A. Rudin, A. Alameh, E. Berber. Near-infrared imaging in re-operative parathyroid surgery: First description of autofluorescence from cryopreserved parathyroid glands. Gland Surg., 8, 283-286(2018).
[53] M. A. McWade, C. Paras, L. M. White, J. E. Phay, C. C. Solórzano, J. T. Broome, A. Mahadevan-Jansen. Label-free intraoperative parathyroid localization with near-infrared autofluorescence imaging. J. Clin. Endocrinol. Metab., 99, 4574-4580(2014).
[54] M. A. McWade, M. E. Sanders, J. T. Broome, C. C. Solorzano, A. Mahadevan-Jansen. Establishing the clinical utility of autofluorescence spectroscopy for parathyroid detection. Surgery, 159, 193-202(2016).
[55] F. Benmiloud, G. Godiris Petit, R. Gras, J. C. Gillot, N. Turrin, G. Penaranda, S. Noullet, N. Chereau, J. Gaudart, L. Chiche, S. Rebaudet. Association of autofluorescence-based detection of the parathyroid glands during total thyroidectomy with postoperative hypocalcemia risk results of the parafluo multicenter randomized clinical trial. JAMA Surg., 155, 106-112(2020).
[56] F. Dip, J. Falco, S. Verna, M. Prunello, M. Loccisano, P. Quadri, K. White, R. Rosenthal. Randomized controlled trial comparing white light with near-infrared autofluorescence for parathyroid gland identification during total thyroidectomy. J. Am. Coll. Surg., 228, 744-751(2019).
[57] M. Pastoricchio, S. Bernardi, M. Bortul, N. de Manzini, C. Dobrinja. Autofluorescence of parathyroid glands during endocrine surgery with minimally invasive technique. J. Endocrinol. Investig., 45, 1393-1403(2022).
[58] L. Sehnem, S. I. Noureldine, S. Avci, G. Isiktas, M. Elshamy, Y. Saito, A. H. A. Ahmed, H. T. Tierney, L. N. Trinh, A. S. Karcioglu, A. Y. Cheung, M. Otremba, V. Krishnamurthy, K. Heiden, J. Jin, J. Shin, A. Siperstein, M. Zafereo, R. P. Tufano, G. W. Randolph, E. Kebebew, M. Milas, Q. Y. Duh, E. Berber. A multicenter evaluation of near-infrared autofluorescence imaging of parathyroid glands in thyroid and parathyroid surgery. Surgery, 173, 132-137(2023).
[59] A. Abood, L. Rolighed, T. Ovesen, S. H. Madsen, P. Vestergaard, F. Triponez. Autofluorescence-guided hemithyroidectomy in a low-volume thyroid institution with no experience in parathyroid surgery: Randomized clinical trial. Br. J. Surg., 111, znae075(2024).
[60] S. Stolik, J. A. Delgado, A. Pérez, L. Anasagasti. Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissues. J. Photochem. Photobiol. B, 57, 90-93(2000).
[61] A. Bellier, Y. Wazne, T. Chollier, N. Sturm, P. Chaffanjon. Spare parathyroid glands during thyroid surgery with perioperative autofluorescence imaging: A diagnostic study. World J. Surg., 45, 2785-2790(2021).
[62] F. Benmiloud, S. Rebaudet, A. Varoquaux, G. Penaranda, M. Bannier, A. Denizot. Impact of autofluorescence-based identification of parathyroids during total thyroidectomy on postoperative hypocalcemia: A before and after controlled study. Surgery, 163, 23-29(2018).
[63] D. H. Kim, S. W. Kim, P. Kang, J. Choi, H. S. Lee, S. Y. Park, Y. Kim, Y. C. Ahn, K. D. Lee. Near-infrared autofluorescence imaging may reduce temporary hypoparathyroidism in patients undergoing total thyroidectomy and central neck dissection. Thyroid, 31, 1400-1408(2021).
[64] T. C. St. Amour, M. S. Demarchi, G. Thomas, F. Triponez, C. M. Kiernan, C. C. Solórzano. Educational review: Intraoperative parathyroid fluorescence detection technology in thyroid and parathyroid surgery. Ann. Surg. Oncol., 30, 973-993(2023).
[65] Y. S. Kim, O. Erten, B. Kahramangil, H. Aydin, M. Donmez, E. Berber. The impact of near infrared fluorescence imaging on parathyroid function after total thyroidectomy. J. Surg. Oncol., 122, 973-979(2020).
[66] A. DiMarco, R. Chotalia, R. Bloxham, C. McIntyre, N. Tolley, F. F. Palazzo. Autofluorescence in parathyroidectomy: Signal intensity correlates with serum calcium and parathyroid hormone but routine clinical use is not justified. World J. Surg., 43, 1532-1537(2019).
[67] S. Akbulut, O. Erten, Y. S. Kim, M. Gokceimam, E. Berber. Development of an algorithm for intraoperative autofluorescence assessment of parathyroid glands in primary hyperparathyroidism using artificial intelligence. Surgery, 170, 454-461(2021).
[68] C. C. Solórzano, G. Thomas, E. Berber, T. S. Wang, G. W. Randolph, Q. Y. Duh, F. Triponez. Current state of intraoperative use of near infrared fluorescence for parathyroid identification and preservation. Surgery, 169, 868-878(2021).
[69] G. Thomas, M. A. McWade, C. Paras, E. A. Mannoh, M. E. Sanders, L. M. White, J. T. Broome, J. E. Phay, N. Baregamian, C. C. Solorzano, A. Mahadevan-Jansen. Developing a clinical prototype to guide surgeons for intraoperative label-free identification of parathyroid glands in real time. Thyroid, 28, 1517-1531(2018).
[70] C. C. Solorzano, G. Thomas, N. Baregamian, A. Mahadevan-Jansen. Detecting the near infrared autofluorescence of the human parathyroid hype or opportunity?. Ann. Surg., 272, 973-985(2020).
[71] C. M. Kiernan, G. Thomas, N. Baregamian, C. C. Solorzano. Initial clinical experiences using the intraoperative probe-based parathyroid autofluorescence identification system-pteyeTM during thyroid and parathyroid procedures. J. Surg. Oncol., 124, 271-281(2021).
[72] S. W. Kim, H. S. Lee, Y. C. Ahn, C. W. Park, S. W. Jeon, C. H. Kim, J. B. Ko, C. Oak, Y. Kim, K. D. Lee. Near-infrared autofluorescence image-guided parathyroid gland mapping in thyroidectomy. J. Am. Coll. Surg., 226, 165-172(2018).
[73] J. T. Alander, I. Kaartinen, A. Laakso, T. Pätilä, T. Spillmann, V. V. Tuchin, M. Venermo, P. Välisuo. A review of indocyanine green fluorescent imaging in surgery. Int. J. Biomed. Imaging, 2012, 940585(2012).
[74] H. Wang, X. Li, B. W. C. Tse, H. Yang, C. A. Thorling, Y. Liu, M. Touraud, J. B. Chouane, X. Liu, M. S. Roberts, X. Liang. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics, 8, 1227-1242(2018).
[75] Z. Wang, Y. Ju, Z. Ali, H. Yin, F. Sheng, J. Lin, B. Wang, Y. Hou. Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics. Nat. Commun., 10, 4418(2019).
[76] H. Zheng, L. Zhang, X. Bai, J. Zhu, S. Liu, Y. Ke, Q. Lin, Y. Yuan, T. Ji. Gcn5-targeted dual-modal probe across the blood-brain barrier for borders display in invasive glioblastoma. Nat. Commun., 16, 2345(2025).
[77] Z. Wang, Y. Yu, Y. Wu, S. Gao, L. Hu, C. Jian, B. Qi, A. Yu. Dynamically monitoring lymphatic and vascular systems in physiological and pathological conditions of a swine model via a portable NIR-II imaging system with ICG. Int. J. Med. Sci., 19, 1864-1874(2022).
[78] Y. Yu, Z. Wang, S. Gao, Y. Wu, A. Yu, F. Wu. Real-time visualization of skeletal muscle necrosis in mice and swine through NIR-II/I fluorescence imaging. J. Biophotonics, 17, e202300225(2024).
[79] X. Fan, J. Yang, H. Ni, Q. Xia, X. Liu, T. Wu, L. Li, P. N. Prasad, C. Liu, H. Lin, J. Qian. Initial experience of NIR-II fluorescence imaging-guided surgery in foot and ankle surgery. Engineering, 40, 19-27(2024).
[80] K. Kim, K. N. Han, B. H. Choi, J. Rho, J. H. Lee, J. S. Eo, C. Kim, B. M. Kim, O. H. Jeon, H. K. Kim. Identification of metastatic lymph nodes using indocyanine green fluorescence imaging. Cancers, 15, 1964(2023).
[81] M. Pan, R. Zhao, C. Fu, M. Tang, J. Zhou, B. Ma, J. Liu, Y. Yang, B. Chen, Q. Zhang, Y. Wang. Tuning nanoparticle core composition drives orthogonal fluorescence amplification for enhanced tumour imaging. Nat. Commun., 15, 7824(2024).
[82] Z. Starosolski, R. Bhavane, K. B. Ghaghada, S. A. Vasudevan, A. Kaay, A. Annapragada. Indocyanine green fluorescence in second near-infrared (NIR-II) window. PLoS One, 12, e0187563(2017).
[83] H. Wu, W. Chen, G. Li, J. Shen, Q. Ye, M. Zhang, W. Chen, J. Liu. Analysis of the differentially expressed genes induced by cisplatin resistance in oral squamous cell carcinomas and their interaction. Front. Genet., 10, 1328(2020).
[84] H. W. Yu, J. W. Chung, J. W. Yi, R. Y. Song, J. H. Lee, H. Kwon, S. J. Kim, Y. J. Chai, J. Y. Choi, K. E. Lee. Intraoperative localization of the parathyroid glands with indocyanine green and Firefly(R) technology during baba robotic thyroidectomy. Surg. Endosc., 31, 3020-3027(2017).
[85] W. W. Kim, J. A. Choi, J. Lee, J. H. Jung, H. Y. Park. Fluorescence imaging–guided robotic thyroidectomy and central lymph node dissection. J. Surg. Res., 231, 297-303(2018).
[86] B. Kahramangil, E. Berber. Comparison of indocyanine green fluorescence and parathyroid autofluorescence imaging in the identification of parathyroid glands during thyroidectomy. Gland Surg., 6, 644-648(2017).
[87] B. H.-H. Lang, C. K. H. Wong, H. T. Hung, K. P. Wong, K. L. Mak, K. B. Au. Indocyanine green fluorescence angiography for quantitative evaluation of in situ parathyroid gland perfusion and function after total thyroidectomy. Surgery, 161, 87-95(2017).
[88] J. Vidal Fortuny, V. Belfontali, S. M. Sadowski, W. Karenovics, S. Guigard, F. Triponez. Parathyroid gland angiography with indocyanine green fluorescence to predict parathyroid function after thyroid surgery. Br. J. Surg., 103, 537-543(2016).
[89] J. van den Bos, L. van Kooten, S. M. E. Engelen, T. Lubbers, L. P. S. Stassen, N. D. Bouvy. Feasibility of indocyanine green fluorescence imaging for intraoperative identification of parathyroid glands during thyroid surgery. Head Neck, 41, 340-348(2019).
[90] A. V. Rudin, T. J. McKenzie, G. B. Thompson, D. R. Farley, M. L. Lyden. Evaluation of parathyroid glands with indocyanine green fluorescence angiography after thyroidectomy. World J. Surg., 43, 1538-1543(2019).
[91] H. S. Abdelrahim, A. F. Amer, R. Mikhael Nageeb. Indocyanine green angiography of parathyroid glands versus intraoperative parathyroid hormone assay as a reliable predictor for post thyroidectomy transient hypocalcemia. J. Invest. Surg., 35, 1484-1491(2022).
[92] Y. Devgan, S. Mayilvaganan, A. Mishra, G. Chand, G. Agarwal, A. Agarwal. Comparison of indocyanine green angiography vs intraoperative parathyroid hormone in early prediction of risk of post-thyroidectomy hypocalcemia: A prospective cohort study. Ann. Med. Surg., 86, 678-688(2024).
[93] F. Dip, P. F. Alesina, A. Anuwong, E. Arora, E. Berber, J. Bonnin-Pascual, N. D. Bouvy, M. S. Demarchi, J. Falco, K. Hallfeldt, K. D. Lee, M. L. Lyden, C. Maser, E. Moore, T. Papavramidis, J. Phay, J. M. Rodriguez, B. Seeliger, C. C. Solórzano, F. Triponez, A. Vahrmeijer, R. J. Rosenthal, K. P. White, M. Bouvet. Use of fluorescence imaging and indocyanine green during thyroid and parathyroid surgery: Results of an intercontinental, multidisciplinary delphi survey. Surgery, 172, S6-S13(2022).
[94] M. Richard, P. Rizo. Feasibility of parathyroid gland autofluorescence imaging after indocyanine green fluorescence angiography. Front. Endocrinol., 14, 1248449(2023).
[95] P. F. Alesina, B. Meier, J. Hinrichs, W. Mohmand, M. K. Walz. Enhanced visualization of parathyroid glands during video-assisted neck surgery. Langenbecks Arch. Surg., 403, 395-401(2018).
[96] S. Yin, B. Pan, Z. Yang, M. Tang, H. Mo, Y. Li, Z. Yi, T. Yin, C. Shao, C. Yan, L. Mo, Y. Yuan, Y. Sun, F. Zhang. Combined use of autofluorescence and indocyanine green fluorescence imaging in the identification and evaluation of parathyroid glands during total thyroidectomy: A randomized controlled trial. Front. Endocrinol., 13, 897797(2022).
[97] L. Rossi, M. C. Vasquez, E. Pieroni, C. E. Ambrosini, M. Miccoli, F. Cetani, R. Elisei, G. Materazzi. Indocyanine green fluorescence and near-infrared autofluorescence may improve post-thyroidectomy parathyroid function. Surgery, 173, 124-131(2023).
Get Citation
Copy Citation Text
Jie Kang, Ziyang Ye, Chao Yan, Bobo Gu. Near-infrared optical imaging for intraoperative identification and assessment of parathyroid glands[J]. Journal of Innovative Optical Health Sciences, 2025, 18(5): 2530009
Category: Research Articles
Received: Apr. 12, 2025
Accepted: May. 20, 2025
Published Online: Aug. 27, 2025
The Author Email: Bobo Gu (bobogu@sjtu.edu.cn)