Chinese Journal of Lasers, Volume. 51, Issue 2, 0201007(2024)
Green‑Pumped Kerr‑Lens Mode‑Locked Alexandrite Laser
[1] Yu X H, Qi D F, Zhou W J et al. Fabrication of periodic nanostructures on the surface of chalcogenide glass using ultrafast laser[J]. Laser & Optoelectronics Progress, 59, 1516019(2022).
[2] Ma Y L, Ming X Z, Jia S Q et al. Study on energy coupling model and tooth surface morphology of face gear surface machined by femtosecond laser[J]. Laser & Optoelectronics Progress, 59, 0714009(2022).
[3] Song Z Y, Huang J, Li Y Z et al. Experimental study on technology and properties of femtosecond laser welding in vitro skin tissue[J]. Chinese Journal of Lasers, 49, 2007107(2022).
[4] Wang T J, Chen N, Guo H et al. Principle and research progress of atmospheric remote sensing by intense femtosecond lasers[J]. Laser & Optoelectronics Progress, 59, 0700001(2022).
[5] Liu L J, Liu W, Ji G et al. NIR emission nanoparticles based on FRET composed of AIE luminogens and NIR dyes for two-photon fluorescence imaging[J]. Chinese Journal of Polymer Science, 37, 401-408(2019).
[6] Jeong T M, Lee J. Generation of high-intensity laser pulses and their applications[M]. Viskup R. High energy and short pulse lasers(2016).
[7] Peng X Y, Marrakchi A, Walling J C et al. Watt-level red and UV output from a CW diode array-pumped tunable alexandrite laser[C], CMAA5(2005).
[8] Popescu D P, Choo-Smith L P, Flueraru C et al. Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications[J]. Biophysical Reviews, 3, 155-169(2011).
[9] Fibrich M, Šulc J, Vyhlídal D et al. Alexandrite spectroscopic and laser characteristic investigation within a 78‒400 K temperature range[J]. Laser Physics, 27, 115801(2017).
[10] Loiko P, Ghanbari S, Matrosov V et al. Dispersion and anisotropy of thermo-optical properties of Alexandrite laser crystal[J]. Optical Materials Express, 8, 3000-3006(2018).
[11] Ghanbari S, Major A. High power continuous-wave Alexandrite laser with green pump[J]. Laser Physics, 26, 075001(2016).
[12] Yorulmaz I, Beyatli E, Kurt A et al. Efficient and low-threshold Alexandrite laser pumped by a single-mode diode[J]. Optical Materials Express, 4, 776-789(2014).
[13] Demirbas U, Kärtner F X. Alexandrite: an attractive thin-disk laser material alternative to Yb∶YAG?[J]. Journal of the Optical Society of America B, 37, 459-472(2020).
[14] Pestryakov E V, Alimpiev A I, Matrosov V N. Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions[J]. Quantum Electronics, 31, 689-696(2001).
[15] Ghanbari S, Akbari R, Major A. Femtosecond Kerr-lens mode-locked Alexandrite laser[J]. Optics Express, 24, 14836-14840(2016).
[16] Ghanbari S, Fedorova K A, Krysa A B et al. Femtosecond Alexandrite laser passively mode-locked by an InP/InGaP quantum-dot saturable absorber[J]. Optics Letters, 43, 232-234(2018).
[17] Cihan C, Muti A, Baylam I et al. 70 femtosecond Kerr-lens mode-locked multipass-cavity Alexandrite laser[J]. Optics Letters, 43, 1315-1318(2018).
[18] Cihan C, Kocabas C, Demirbas U et al. Graphene mode-locked femtosecond Alexandrite laser[J]. Optics Letters, 43, 3969-3972(2018).
[19] Miao R L, Nie Y, Wang S W et al. Self-mode-locked alexandrite femtosecond lasers with multi-GHz repetition rates[J]. Optics Letters, 46, 1979-1982(2021).
[20] Hu S, Yang C S, Chang S L et al. Efficacy and safety of the picosecond 755-nm alexandrite laser for treatment of dermal pigmentation in Asians: a retrospective study[J]. Lasers in Medical Science, 35, 1377-1383(2020).
[21] Wang Y, Wang Q, Xian Y et al. A comparison of the picosecond alexandrite laser and nanosecond alexandrite laser in the treatment of facial freckles[J]. Chinese Journal of Aesthetic Medicine, 28, 72-74(2019).
[22] Ding Z G, Zhao Y X, Mao J C et al. Comparison of the efficacy of picosecond alexandrite laser and Q-switched alexandrite laser for treating ota nevus[J]. Chinese Journal of Aesthetic Medicine, 30, 30-33(2021).
[23] Loiko P, Major A. Dispersive properties of alexandrite and beryllium hexaaluminate crystals[J]. Optical Materials Express, 6, 2177-2183(2016).
[24] Walling J, Peterson O, Jenssen H et al. Tunable alexandrite lasers[J]. IEEE Journal of Quantum Electronics, 16, 1302-1315(1980).
Get Citation
Copy Citation Text
Yunxiao Yang, Yang Yu, Wenlong Tian, Jiangfeng Zhu, Zhiyi Wei. Green‑Pumped Kerr‑Lens Mode‑Locked Alexandrite Laser[J]. Chinese Journal of Lasers, 2024, 51(2): 0201007
Category: laser devices and laser physics
Received: Mar. 23, 2023
Accepted: Jun. 19, 2023
Published Online: Jan. 8, 2024
The Author Email: Tian Wenlong (wltian@xidian.edu.cn), Zhu Jiangfeng (jfzhu@xidian.edu.cn)
CSTR:32183.14.CJL230641