Acta Optica Sinica, Volume. 42, Issue 3, 0327005(2022)

Experimental Progress of Strongly Coupling between Optical Cavity and Atoms

Gang Li1、*, Pengfei Zhang1, Pengfei Yang1,2, Zhihui Wang1, and Tiancai Zhang1、**
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • 2Institute of Big Data Science and Industry, Shanxi University, Taiyuan, Shanxi 0 30006, China
  • show less
    References(101)

    [1] Raimond J M, Brune M, Haroche S. Manipulating quantum entanglement with atoms and photons in a cavity[J]. Reviews of Modern Physics, 73, 565(2001).

    [2] Haroche S. Nobel lecture: controlling photons in a box and exploring the quantum to classical boundary[J]. Reviews of Modern Physics, 85, 1083(2013).

    [3] Kimble H J. Strong interactions of single atoms and photons in cavity QED[J]. Physica Scripta, T76, 127(1998).

    [4] Cirac J I, Zoller P, Kimble H J et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network[J]. Physical Review Letters, 78, 3221(1997).

    [5] Kimble H J. The quantum internet[J]. Nature, 453, 1023-1030(2008).

    [6] Reiserer A, Rempe G. Cavity-based quantum networks with single atoms and optical photons[J]. Reviews of Modern Physics, 87, 1379(2015).

    [7] McKeever J, Boca A, Boozer A D et al. Experimental realization of a one-atom laser in the regime of strong coupling[J]. Nature, 425, 268-271(2003).

    [8] McKeever J, Boca A, Boozer A D et al. Deterministic generation of single photons from one atom trapped in a cavity[J]. Science, 303, 1992-1994(2004).

    [9] Kuhn A, Hennrich M, Rempe G. Deterministic single-photon source for distributed quantum networking[J]. Physical Review Letters, 89, 067901(2002).

    [10] Wilk T, Webster S C, Kuhn A et al. Single-atom single-photon quantum interface[J]. Science, 317, 488-490(2007).

    [11] Schupp J, Krcmarsky V, Krutyanskiy V et al. Interface between trapped-ion qubits and traveling photons with close-to-optimal efficiency[J]. PRX Quantum, 2, 020331(2021).

    [12] Ritter S, Nölleke C, Hahn C et al. An elementary quantum network of single atoms in optical cavities[J]. Nature, 484, 195-200(2012).

    [13] Reiserer A, Kalb N, Rempe G et al. A quantum gate between a flying optical photon and a single trapped atom[J]. Nature, 508, 237-240(2014).

    [14] Hacker B, Welte S, Rempe G et al. A photon-photon quantum gate based on a single atom in an optical resonator[J]. Nature, 536, 193-196(2016).

    [15] Daiss S, Langenfeld S, Welte S et al. A quantum-logic gate between distant quantum-network modules[J]. Science, 371, 614-617(2021).

    [16] Bohnet J G, Chen Z L, Weiner J M et al. A steady-state superradiant laser with less than one intracavity photon[J]. Nature, 484, 78-81(2012).

    [17] Norcia M A, Winchester M N. Cline J R K, et al. Superradiance on the millihertz linewidth strontium clock transition[J]. Science Advances, 2, e1601231(2016).

    [18] Kim J, Yang D, Oh S H et al. Coherent single-atom superradiance[J]. Science, 359, 662-666(2018).

    [19] Baumann K, Guerlin C, Brennecke F et al. Dicke quantum phase transition with a superfluid gas in an optical cavity[J]. Nature, 464, 1301-1306(2010).

    [20] Zhang X T, Chen Y, Wu Z M et al. Observation of a superradiant quantum phase transition in an intracavity degenerate Fermi gas[J]. Science, 373, 1359-1362(2021).

    [21] Norcia M A. Lewis-Swan R J, Cline J R K, et al. Cavity-mediated collective spin-exchange interactions in a strontium superradiant laser[J]. Science, 361, 259-262(2018).

    [22] Haas F, Volz J, Gehr R et al. Entangled states of more than 40 atoms in an optical fiber cavity[J]. Science, 344, 180-183(2014).

    [23] Barontini G, Hohmann L, Haas F et al. Deterministic generation of multiparticle entanglement by quantum Zeno dynamics[J]. Science, 349, 1317-1321(2015).

    [24] McConnell R, Zhang H, Hu J Z et al. Entanglement with negative Wigner function of almost 3, 000 atoms heralded by one photon[J]. Nature, 519, 439-442(2015).

    [25] Chen Z L, Bohnet J G, Weiner J M et al. Cavity-aided nondemolition measurements for atom counting and spin squeezing[J]. Physical Review A, 89, 043837(2014).

    [26] Chen Z L, Bohnet J G, Sankar S R et al. Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting[J]. Physical Review Letters, 106, 133601(2011).

    [27] Bohnet J G, Cox K C, Norcia M A et al. Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit[J]. Nature Photonics, 8, 731-736(2014).

    [28] Cox K C, Greve G P, Weiner J M et al. Deterministic squeezed states with collective measurements and feedback[J]. Physical Review Letters, 116, 093602(2016).

    [29] Schleier-Smith M H, Leroux I D. States of an ensemble of two-level atoms with reduced quantum uncertainty[J]. Physical Review Letters, 104, 073604(2010).

    [30] Hosten O, Engelsen N J, Krishnakumar R et al. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms[J]. Nature, 529, 505-508(2016).

    [31] Malia B K, Martínez-Rincón J, Wu Y F et al. Free space Ramsey spectroscopy in rubidium with noise below the quantum projection limit[J]. Physical Review Letters, 125, 043202(2020).

    [32] Schleier-Smith M H, Leroux I D. Squeezing the collective spin of a dilute atomic ensemble by cavity feedback[J]. Physical Review A, 81, 021804(2011).

    [33] Leroux I D. Schleier-Smith M H, Vuleti V. Implementation of cavity squeezing of a collective atomic spin[J]. Physical Review Letters, 104, 073602(2010).

    [34] Leroux I D. Schleier-Smith M H, Vuleti V. Orientation-dependent entanglement lifetime in a squeezed atomic clock[J]. Physical Review Letters, 104, 250801(2010).

    [35] Braverman B, Kawasaki A, Pedrozo-Peñafiel E et al. Near-unitary spin squeezing in 171Yb[J]. Physical Review Letters, 122, 223203(2019).

    [36] Pedrozo-Peñafiel E, Colombo S, Shu C et al. Entanglement on an optical atomic-clock transition[J]. Nature, 588, 414-418(2020).

    [37] Neuzner A, Körber M, Morin O et al. Interference and dynamics of light from a distance-controlled atom pair in an optical cavity[J]. Nature Photonics, 10, 303-306(2016).

    [38] Mlynek J A, Abdumalikov A A, Eichler C et al. Observation of Dicke superradiance for two artificial atoms in a cavity with high decay rate[J]. Nature Communications, 5, 5186(2014).

    [39] Reimann R, Alt W, Kampschulte T et al. Cavity-modified collective Rayleigh scattering of two atoms[J]. Physical Review Letters, 114, 023601(2015).

    [40] Casabone B, Friebe K, Brandstätter B et al. Enhanced quantum interface with collective ion-cavity coupling[J]. Physical Review Letters, 114, 023602(2015).

    [41] Casabone B, Stute A, Friebe K et al. Heralded entanglement of two ions in an optical cavity[J]. Physical Review Letters, 111, 100505(2013).

    [42] Welte S, Hacker B, Daiss S et al. Cavity carving of atomic bell states[J]. Physical Review Letters, 118, 210503(2017).

    [43] Welte S, Hacker B, Daiss S et al. Photon-mediated quantum gate between two neutral atoms in an optical cavity[J]. Physical Review X, 8, 011018(2018).

    [44] Langenfeld S, Morin O, Körber M et al. A network-ready random-access qubits memory[J]. Npj Quantum Information, 6, 86(2020).

    [45] Langenfeld S, Thomas P, Morin O et al. Quantum repeater node demonstrating unconditionally secure key distribution[J]. Physical Review Letters, 126, 230506(2021).

    [46] Samutpraphoot P. D-orđevi T, Ocola P L, et al. Strong coupling of two individually controlled atoms via a nanophotonic cavity[J]. Physical Review Letters, 124, 063602(2020).

    [47] Samutpraphoot P, Ocola P L et al. Entanglement transport and a nanophotonic interface for atoms in optical tweezers[J]. Science, 373, 1511-1514(2021).

    [48] Jaynes E T, Cummings F W. Comparison of quantum and semiclassical radiation theories with application to the beam maser[J]. Proceedings of the IEEE, 51, 89-109(1963).

    [49] Hood C J, Chapman M S, Lynn T W et al. Real-time cavity QED with single atoms[J]. Physical Review Letters, 80, 4157(1998).

    [50] Hood C J, Kimble H J, Ye J. Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity[J]. Physical Review A, 64, 033804(2001).

    [51] Ye J, Vernooy D W, Kimble H J. Trapping of single atoms in cavity QED[J]. Physical Review Letters, 83, 4987(1999).

    [52] Münstermann P, Fischer T. Pinkse P W H, et al. Single slow atoms from an atomic fountain observed in a high-finesse optical cavity[J]. Optics Communications, 159, 63-67(1999).

    [53] Nußmann S, Hijlkema M, Weber B et al. Submicron positioning of single atoms in a microcavity[J]. Physical Review Letters, 95, 173602(2005).

    [54] Fortier K M, Kim S Y, Gibbons M J et al. Deterministic loading of individual atoms to a high-finesse optical cavity[J]. Physical Review Letters, 98, 233601(2007).

    [55] Maunz P, Puppe T, Schuster I et al. Cavity cooling of a single atom[J]. Nature, 428, 50-52(2004).

    [56] Boca A, Miller R, Birnbaum K M et al. Observation of the vacuum Rabi spectrum for one trapped atom[J]. Physical Review Letters, 93, 233603(2004).

    [57] Maunz P, Puppe T, Schuster I et al. Normal-mode spectroscopy of a single-bound-atom-cavity system[J]. Physical Review Letters, 94, 033002(2005).

    [58] Morin O, Körber M, Langenfeld S et al. Deterministic shaping and reshaping of single-photon temporal wave functions[J]. Physical Review Letters, 123, 133602(2019).

    [59] Birnbaum K M, Boca A, Miller R et al. Photon blockade in an optical cavity with one trapped atom[J]. Nature, 436, 87-90(2005).

    [60] Hamsen C, Tolazzi K N, Wilk T et al. Two-photon blockade in an atom-driven cavity QED system[J]. Physical Review Letters, 118, 133604(2017).

    [61] Pinkse P W H, Fischer T, Maunz P et al. Trapping an atom with single photons[J]. Nature, 404, 365-368(2000).

    [62] Doherty A C, Lynn T W, Hood C J et al. Trapping of single atoms with single photons in cavity QED[J]. Physical Review A, 63, 013401(2000).

    [63] Hood C J, Lynn T W, Doherty A C et al. The atom-cavity microscope: single atoms bound in orbit by single photons[J]. Science, 287, 1447-1453(2000).

    [64] Zhang P F, Guo Y Q, Li Z H et al. Elimination of degenerate trajectory of single atom strongly coupled to the tilted cavity TEM10 mode[J]. Physical Review A, 83, 031804(2011).

    [65] Du J J, Li W F, Wen R J et al. Precision measurement of single atoms strongly coupled to the higher-order transverse modes of a high-finesse optical cavity[J]. Applied Physics Letters, 103, 083117(2013).

    [66] Bochmann J, Mücke M, Guhl C et al. Lossless state detection of single neutral atoms[J]. Physical Review Letters, 104, 203601(2010).

    [67] Gehr R, Volz J, Dubois G et al. Cavity-based single atom preparation and high-fidelity hyperfine state readout[J]. Physical Review Letters, 104, 203602(2010).

    [68] Volz J, Gehr R, Dubois G et al. Measurement of the internal state of a single atom without energy exchange[J]. Nature, 475, 210-213(2011).

    [69] Reiserer A, Ritter S, Rempe G. Nondestructive detection of an optical photon[J]. Science, 342, 1349-1351(2013).

    [70] Duan L M, Kimble H J. Scalable photonic quantum computation through cavity-assisted interactions[J]. Physical Review Letters, 92, 127902(2004).

    [71] Niemietz D, Farrera P, Langenfeld S et al. Nondestructive detection of photonic qubits[J]. Nature, 591, 570-574(2021).

    [72] Tiecke T G. Thompson J D, de Leon N P, et al. Nanophotonic quantum phase switch with a single atom[J]. Nature, 508, 241-244(2014).

    [73] Langenfeld S, Welte S, Hartung L et al. Quantum teleportation between remote qubit memories with only a single photon as a resource[J]. Physical Review Letters, 126, 130502(2021).

    [74] Welte S, Thomas P, Hartung L et al. A nondestructive Bell-state measurement on two distant atomic qubits[J]. Nature Photonics, 15, 504-509(2021).

    [75] Distante E, Daiss S, Langenfeld S et al. Detecting an itinerant optical photon twice without destroying it[J]. Physical Review Letters, 126, 253603(2021).

    [76] Ourjoumtsev A, Jeong H, Tualle-Brouri R et al. Generation of optical ‘Schrödinger cats’ from photon number states[J]. Nature, 448, 784-786(2007).

    [77] Wang B, Duan L M. Engineering superpositions of coherent states in coherent optical pulses through cavity-assisted interaction[J]. Physical Review A, 72, 022320(2005).

    [78] Hacker B, Welte S, Daiss S et al. Deterministic creation of entangled atom-light Schrödinger-cat states[J]. Nature Photonics, 13, 110-115(2019).

    [79] Uphoff M, Brekenfeld M, Rempe G et al. Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities[J]. New Journal of Physics, 17, 013053(2015).

    [80] Brekenfeld M, Niemietz D, Christesen J D et al. A quantum network node with crossed optical fibre cavities[J]. Nature Physics, 16, 647-651(2020).

    [81] Saavedra C, Pandey D, Alt W et al. Tunable fiber Fabry-Perot cavities with high passive stability[J]. Optics Express, 29, 974-982(2021).

    [82] Gallego J, Ghosh S, Alavi S K et al. High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis[J]. Applied Physics B, 122, 47(2016).

    [83] Thompson J D. Tiecke T G, de Leon N P, et al. Coupling a single trapped atom to a nanoscale optical cavity[J]. Science, 340, 1202-1205(2013).

    [84] Garraway B M. The Dicke model in quantum optics: Dicke model revisited[J]. Philosophical Transactions of the Royal Society A, 369, 1137-1155(2011).

    [85] Agarwal G S. Spectroscopy of strongly coupled atom-cavity systems: a topical review[J]. Journal of Modern Optics, 45, 449-470(1998).

    [86] Solano P, Barberis-Blostein P, Fatemi F K et al. Super-radiance reveals infinite-range dipole interactions through a nanofiber[J]. Nature Communications, 8, 1857(2017).

    [87] Muniz J A, Barberena D. Lewis-Swan R J, et al. Exploring dynamical phase transitions with cold atoms in an optical cavity[J]. Nature, 580, 602-607(2020).

    [88] Habibian H, Zippilli S, Morigi G. Quantum light by atomic arrays in optical resonators[J]. Physical Review A, 84, 033829(2011).

    [89] Rempe G, Thompson R J, Brecha R J et al. Optical bistability and photon statistics in cavity quantum electrodynamics[J]. Physical Review Letters, 67, 1727(1991).

    [90] Yang P F, Xia X W, He H et al. Realization of nonlinear optical nonreciprocity on a few-photon level based on atoms strongly coupled to an asymmetric cavity[J]. Physical Review Letters, 123, 233604(2019).

    [92] Endres M, Bernien H, Keesling A et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays[J]. Science, 354, 1024-1027(2016).

    [93] Barredo D, de Léséleuc S, Lienhard V et al. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays[J]. Science, 354, 1021-1023(2016).

    [94] Barredo D. Lienhard V, de Léséleuc S, et al. Synthetic three-dimensional atomic structures assembled atom by atom[J]. Nature, 561, 79-82(2018).

    [95] Kumar A, Wu T Y, Giraldo F et al. Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demon[J]. Nature, 561, 83-87(2018).

    [96] Wang Y, Kumar A, Wu T Y et al. Single-qubit gates based on targeted phase shifts in a 3D neutral atom array[J]. Science, 352, 1562-1565(2016).

    [97] Sheng C, He X D, Xu P et al. High-fidelity single-qubit gates on neutral atoms in a two-dimensional magic-intensity optical dipole trap array[J]. Physical Review Letters, 121, 240501(2018).

    [98] Levine H, Keesling A, Semeghini G et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms[J]. Physical Review Letters, 123, 170503(2019).

    [99] Saffman M, Walker T G, Mølmer K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 82, 2313(2010).

    [100] Weiss D S, Saffman M. Quantum computing with neutral atoms[J]. Physics Today, 70, 44-50(2017).

    [101] Begley S, Vogt M, Gulati G K et al. Optimized multi-ion cavity coupling[J]. Physical Review Letters, 116, 223001(2016).

    Tools

    Get Citation

    Copy Citation Text

    Gang Li, Pengfei Zhang, Pengfei Yang, Zhihui Wang, Tiancai Zhang. Experimental Progress of Strongly Coupling between Optical Cavity and Atoms[J]. Acta Optica Sinica, 2022, 42(3): 0327005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Sep. 1, 2021

    Accepted: Dec. 10, 2021

    Published Online: Jan. 24, 2022

    The Author Email: Li Gang (gangli@sxu.edu.cn), Zhang Tiancai (tczhang@sxu.edu.cn)

    DOI:10.3788/AOS202242.0327005

    Topics