Acta Optica Sinica, Volume. 42, Issue 3, 0327005(2022)
Experimental Progress of Strongly Coupling between Optical Cavity and Atoms
[1] Raimond J M, Brune M, Haroche S. Manipulating quantum entanglement with atoms and photons in a cavity[J]. Reviews of Modern Physics, 73, 565(2001).
[2] Haroche S. Nobel lecture: controlling photons in a box and exploring the quantum to classical boundary[J]. Reviews of Modern Physics, 85, 1083(2013).
[3] Kimble H J. Strong interactions of single atoms and photons in cavity QED[J]. Physica Scripta, T76, 127(1998).
[4] Cirac J I, Zoller P, Kimble H J et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network[J]. Physical Review Letters, 78, 3221(1997).
[5] Kimble H J. The quantum internet[J]. Nature, 453, 1023-1030(2008).
[6] Reiserer A, Rempe G. Cavity-based quantum networks with single atoms and optical photons[J]. Reviews of Modern Physics, 87, 1379(2015).
[7] McKeever J, Boca A, Boozer A D et al. Experimental realization of a one-atom laser in the regime of strong coupling[J]. Nature, 425, 268-271(2003).
[8] McKeever J, Boca A, Boozer A D et al. Deterministic generation of single photons from one atom trapped in a cavity[J]. Science, 303, 1992-1994(2004).
[9] Kuhn A, Hennrich M, Rempe G. Deterministic single-photon source for distributed quantum networking[J]. Physical Review Letters, 89, 067901(2002).
[10] Wilk T, Webster S C, Kuhn A et al. Single-atom single-photon quantum interface[J]. Science, 317, 488-490(2007).
[11] Schupp J, Krcmarsky V, Krutyanskiy V et al. Interface between trapped-ion qubits and traveling photons with close-to-optimal efficiency[J]. PRX Quantum, 2, 020331(2021).
[12] Ritter S, Nölleke C, Hahn C et al. An elementary quantum network of single atoms in optical cavities[J]. Nature, 484, 195-200(2012).
[13] Reiserer A, Kalb N, Rempe G et al. A quantum gate between a flying optical photon and a single trapped atom[J]. Nature, 508, 237-240(2014).
[14] Hacker B, Welte S, Rempe G et al. A photon-photon quantum gate based on a single atom in an optical resonator[J]. Nature, 536, 193-196(2016).
[15] Daiss S, Langenfeld S, Welte S et al. A quantum-logic gate between distant quantum-network modules[J]. Science, 371, 614-617(2021).
[16] Bohnet J G, Chen Z L, Weiner J M et al. A steady-state superradiant laser with less than one intracavity photon[J]. Nature, 484, 78-81(2012).
[17] Norcia M A, Winchester M N. Cline J R K, et al. Superradiance on the millihertz linewidth strontium clock transition[J]. Science Advances, 2, e1601231(2016).
[18] Kim J, Yang D, Oh S H et al. Coherent single-atom superradiance[J]. Science, 359, 662-666(2018).
[19] Baumann K, Guerlin C, Brennecke F et al. Dicke quantum phase transition with a superfluid gas in an optical cavity[J]. Nature, 464, 1301-1306(2010).
[20] Zhang X T, Chen Y, Wu Z M et al. Observation of a superradiant quantum phase transition in an intracavity degenerate Fermi gas[J]. Science, 373, 1359-1362(2021).
[21] Norcia M A. Lewis-Swan R J, Cline J R K, et al. Cavity-mediated collective spin-exchange interactions in a strontium superradiant laser[J]. Science, 361, 259-262(2018).
[22] Haas F, Volz J, Gehr R et al. Entangled states of more than 40 atoms in an optical fiber cavity[J]. Science, 344, 180-183(2014).
[23] Barontini G, Hohmann L, Haas F et al. Deterministic generation of multiparticle entanglement by quantum Zeno dynamics[J]. Science, 349, 1317-1321(2015).
[24] McConnell R, Zhang H, Hu J Z et al. Entanglement with negative Wigner function of almost 3, 000 atoms heralded by one photon[J]. Nature, 519, 439-442(2015).
[25] Chen Z L, Bohnet J G, Weiner J M et al. Cavity-aided nondemolition measurements for atom counting and spin squeezing[J]. Physical Review A, 89, 043837(2014).
[26] Chen Z L, Bohnet J G, Sankar S R et al. Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting[J]. Physical Review Letters, 106, 133601(2011).
[27] Bohnet J G, Cox K C, Norcia M A et al. Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit[J]. Nature Photonics, 8, 731-736(2014).
[28] Cox K C, Greve G P, Weiner J M et al. Deterministic squeezed states with collective measurements and feedback[J]. Physical Review Letters, 116, 093602(2016).
[29] Schleier-Smith M H, Leroux I D. States of an ensemble of two-level atoms with reduced quantum uncertainty[J]. Physical Review Letters, 104, 073604(2010).
[30] Hosten O, Engelsen N J, Krishnakumar R et al. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms[J]. Nature, 529, 505-508(2016).
[31] Malia B K, Martínez-Rincón J, Wu Y F et al. Free space Ramsey spectroscopy in rubidium with noise below the quantum projection limit[J]. Physical Review Letters, 125, 043202(2020).
[32] Schleier-Smith M H, Leroux I D. Squeezing the collective spin of a dilute atomic ensemble by cavity feedback[J]. Physical Review A, 81, 021804(2011).
[33] Leroux I D. Schleier-Smith M H, Vuleti V. Implementation of cavity squeezing of a collective atomic spin[J]. Physical Review Letters, 104, 073602(2010).
[34] Leroux I D. Schleier-Smith M H, Vuleti V. Orientation-dependent entanglement lifetime in a squeezed atomic clock[J]. Physical Review Letters, 104, 250801(2010).
[35] Braverman B, Kawasaki A, Pedrozo-Peñafiel E et al. Near-unitary spin squeezing in 171Yb[J]. Physical Review Letters, 122, 223203(2019).
[36] Pedrozo-Peñafiel E, Colombo S, Shu C et al. Entanglement on an optical atomic-clock transition[J]. Nature, 588, 414-418(2020).
[37] Neuzner A, Körber M, Morin O et al. Interference and dynamics of light from a distance-controlled atom pair in an optical cavity[J]. Nature Photonics, 10, 303-306(2016).
[38] Mlynek J A, Abdumalikov A A, Eichler C et al. Observation of Dicke superradiance for two artificial atoms in a cavity with high decay rate[J]. Nature Communications, 5, 5186(2014).
[39] Reimann R, Alt W, Kampschulte T et al. Cavity-modified collective Rayleigh scattering of two atoms[J]. Physical Review Letters, 114, 023601(2015).
[40] Casabone B, Friebe K, Brandstätter B et al. Enhanced quantum interface with collective ion-cavity coupling[J]. Physical Review Letters, 114, 023602(2015).
[41] Casabone B, Stute A, Friebe K et al. Heralded entanglement of two ions in an optical cavity[J]. Physical Review Letters, 111, 100505(2013).
[42] Welte S, Hacker B, Daiss S et al. Cavity carving of atomic bell states[J]. Physical Review Letters, 118, 210503(2017).
[43] Welte S, Hacker B, Daiss S et al. Photon-mediated quantum gate between two neutral atoms in an optical cavity[J]. Physical Review X, 8, 011018(2018).
[44] Langenfeld S, Morin O, Körber M et al. A network-ready random-access qubits memory[J]. Npj Quantum Information, 6, 86(2020).
[45] Langenfeld S, Thomas P, Morin O et al. Quantum repeater node demonstrating unconditionally secure key distribution[J]. Physical Review Letters, 126, 230506(2021).
[46] Samutpraphoot P. D-orđevi T, Ocola P L, et al. Strong coupling of two individually controlled atoms via a nanophotonic cavity[J]. Physical Review Letters, 124, 063602(2020).
[47] Samutpraphoot P, Ocola P L et al. Entanglement transport and a nanophotonic interface for atoms in optical tweezers[J]. Science, 373, 1511-1514(2021).
[48] Jaynes E T, Cummings F W. Comparison of quantum and semiclassical radiation theories with application to the beam maser[J]. Proceedings of the IEEE, 51, 89-109(1963).
[49] Hood C J, Chapman M S, Lynn T W et al. Real-time cavity QED with single atoms[J]. Physical Review Letters, 80, 4157(1998).
[50] Hood C J, Kimble H J, Ye J. Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity[J]. Physical Review A, 64, 033804(2001).
[51] Ye J, Vernooy D W, Kimble H J. Trapping of single atoms in cavity QED[J]. Physical Review Letters, 83, 4987(1999).
[52] Münstermann P, Fischer T. Pinkse P W H, et al. Single slow atoms from an atomic fountain observed in a high-finesse optical cavity[J]. Optics Communications, 159, 63-67(1999).
[53] Nußmann S, Hijlkema M, Weber B et al. Submicron positioning of single atoms in a microcavity[J]. Physical Review Letters, 95, 173602(2005).
[54] Fortier K M, Kim S Y, Gibbons M J et al. Deterministic loading of individual atoms to a high-finesse optical cavity[J]. Physical Review Letters, 98, 233601(2007).
[55] Maunz P, Puppe T, Schuster I et al. Cavity cooling of a single atom[J]. Nature, 428, 50-52(2004).
[56] Boca A, Miller R, Birnbaum K M et al. Observation of the vacuum Rabi spectrum for one trapped atom[J]. Physical Review Letters, 93, 233603(2004).
[57] Maunz P, Puppe T, Schuster I et al. Normal-mode spectroscopy of a single-bound-atom-cavity system[J]. Physical Review Letters, 94, 033002(2005).
[58] Morin O, Körber M, Langenfeld S et al. Deterministic shaping and reshaping of single-photon temporal wave functions[J]. Physical Review Letters, 123, 133602(2019).
[59] Birnbaum K M, Boca A, Miller R et al. Photon blockade in an optical cavity with one trapped atom[J]. Nature, 436, 87-90(2005).
[60] Hamsen C, Tolazzi K N, Wilk T et al. Two-photon blockade in an atom-driven cavity QED system[J]. Physical Review Letters, 118, 133604(2017).
[61] Pinkse P W H, Fischer T, Maunz P et al. Trapping an atom with single photons[J]. Nature, 404, 365-368(2000).
[62] Doherty A C, Lynn T W, Hood C J et al. Trapping of single atoms with single photons in cavity QED[J]. Physical Review A, 63, 013401(2000).
[63] Hood C J, Lynn T W, Doherty A C et al. The atom-cavity microscope: single atoms bound in orbit by single photons[J]. Science, 287, 1447-1453(2000).
[64] Zhang P F, Guo Y Q, Li Z H et al. Elimination of degenerate trajectory of single atom strongly coupled to the tilted cavity TEM10 mode[J]. Physical Review A, 83, 031804(2011).
[65] Du J J, Li W F, Wen R J et al. Precision measurement of single atoms strongly coupled to the higher-order transverse modes of a high-finesse optical cavity[J]. Applied Physics Letters, 103, 083117(2013).
[66] Bochmann J, Mücke M, Guhl C et al. Lossless state detection of single neutral atoms[J]. Physical Review Letters, 104, 203601(2010).
[67] Gehr R, Volz J, Dubois G et al. Cavity-based single atom preparation and high-fidelity hyperfine state readout[J]. Physical Review Letters, 104, 203602(2010).
[68] Volz J, Gehr R, Dubois G et al. Measurement of the internal state of a single atom without energy exchange[J]. Nature, 475, 210-213(2011).
[69] Reiserer A, Ritter S, Rempe G. Nondestructive detection of an optical photon[J]. Science, 342, 1349-1351(2013).
[70] Duan L M, Kimble H J. Scalable photonic quantum computation through cavity-assisted interactions[J]. Physical Review Letters, 92, 127902(2004).
[71] Niemietz D, Farrera P, Langenfeld S et al. Nondestructive detection of photonic qubits[J]. Nature, 591, 570-574(2021).
[72] Tiecke T G. Thompson J D, de Leon N P, et al. Nanophotonic quantum phase switch with a single atom[J]. Nature, 508, 241-244(2014).
[73] Langenfeld S, Welte S, Hartung L et al. Quantum teleportation between remote qubit memories with only a single photon as a resource[J]. Physical Review Letters, 126, 130502(2021).
[74] Welte S, Thomas P, Hartung L et al. A nondestructive Bell-state measurement on two distant atomic qubits[J]. Nature Photonics, 15, 504-509(2021).
[75] Distante E, Daiss S, Langenfeld S et al. Detecting an itinerant optical photon twice without destroying it[J]. Physical Review Letters, 126, 253603(2021).
[76] Ourjoumtsev A, Jeong H, Tualle-Brouri R et al. Generation of optical ‘Schrödinger cats’ from photon number states[J]. Nature, 448, 784-786(2007).
[77] Wang B, Duan L M. Engineering superpositions of coherent states in coherent optical pulses through cavity-assisted interaction[J]. Physical Review A, 72, 022320(2005).
[78] Hacker B, Welte S, Daiss S et al. Deterministic creation of entangled atom-light Schrödinger-cat states[J]. Nature Photonics, 13, 110-115(2019).
[79] Uphoff M, Brekenfeld M, Rempe G et al. Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities[J]. New Journal of Physics, 17, 013053(2015).
[80] Brekenfeld M, Niemietz D, Christesen J D et al. A quantum network node with crossed optical fibre cavities[J]. Nature Physics, 16, 647-651(2020).
[81] Saavedra C, Pandey D, Alt W et al. Tunable fiber Fabry-Perot cavities with high passive stability[J]. Optics Express, 29, 974-982(2021).
[82] Gallego J, Ghosh S, Alavi S K et al. High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis[J]. Applied Physics B, 122, 47(2016).
[83] Thompson J D. Tiecke T G, de Leon N P, et al. Coupling a single trapped atom to a nanoscale optical cavity[J]. Science, 340, 1202-1205(2013).
[84] Garraway B M. The Dicke model in quantum optics: Dicke model revisited[J]. Philosophical Transactions of the Royal Society A, 369, 1137-1155(2011).
[85] Agarwal G S. Spectroscopy of strongly coupled atom-cavity systems: a topical review[J]. Journal of Modern Optics, 45, 449-470(1998).
[86] Solano P, Barberis-Blostein P, Fatemi F K et al. Super-radiance reveals infinite-range dipole interactions through a nanofiber[J]. Nature Communications, 8, 1857(2017).
[87] Muniz J A, Barberena D. Lewis-Swan R J, et al. Exploring dynamical phase transitions with cold atoms in an optical cavity[J]. Nature, 580, 602-607(2020).
[88] Habibian H, Zippilli S, Morigi G. Quantum light by atomic arrays in optical resonators[J]. Physical Review A, 84, 033829(2011).
[89] Rempe G, Thompson R J, Brecha R J et al. Optical bistability and photon statistics in cavity quantum electrodynamics[J]. Physical Review Letters, 67, 1727(1991).
[90] Yang P F, Xia X W, He H et al. Realization of nonlinear optical nonreciprocity on a few-photon level based on atoms strongly coupled to an asymmetric cavity[J]. Physical Review Letters, 123, 233604(2019).
[92] Endres M, Bernien H, Keesling A et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays[J]. Science, 354, 1024-1027(2016).
[93] Barredo D, de Léséleuc S, Lienhard V et al. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays[J]. Science, 354, 1021-1023(2016).
[94] Barredo D. Lienhard V, de Léséleuc S, et al. Synthetic three-dimensional atomic structures assembled atom by atom[J]. Nature, 561, 79-82(2018).
[95] Kumar A, Wu T Y, Giraldo F et al. Sorting ultracold atoms in a three-dimensional optical lattice in a realization of Maxwell’s demon[J]. Nature, 561, 83-87(2018).
[96] Wang Y, Kumar A, Wu T Y et al. Single-qubit gates based on targeted phase shifts in a 3D neutral atom array[J]. Science, 352, 1562-1565(2016).
[97] Sheng C, He X D, Xu P et al. High-fidelity single-qubit gates on neutral atoms in a two-dimensional magic-intensity optical dipole trap array[J]. Physical Review Letters, 121, 240501(2018).
[98] Levine H, Keesling A, Semeghini G et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms[J]. Physical Review Letters, 123, 170503(2019).
[99] Saffman M, Walker T G, Mølmer K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 82, 2313(2010).
[100] Weiss D S, Saffman M. Quantum computing with neutral atoms[J]. Physics Today, 70, 44-50(2017).
[101] Begley S, Vogt M, Gulati G K et al. Optimized multi-ion cavity coupling[J]. Physical Review Letters, 116, 223001(2016).
Get Citation
Copy Citation Text
Gang Li, Pengfei Zhang, Pengfei Yang, Zhihui Wang, Tiancai Zhang. Experimental Progress of Strongly Coupling between Optical Cavity and Atoms[J]. Acta Optica Sinica, 2022, 42(3): 0327005
Category: Quantum Optics
Received: Sep. 1, 2021
Accepted: Dec. 10, 2021
Published Online: Jan. 24, 2022
The Author Email: Li Gang (gangli@sxu.edu.cn), Zhang Tiancai (tczhang@sxu.edu.cn)