Laser & Optoelectronics Progress, Volume. 60, Issue 10, 1028006(2023)

Weighted Sparse Cauchy Nonnegative Matrix Factorization Hyperspectral Unmixing Based on Spatial-Spectral Constraints

Shanxue Chen1,2 and Zhiyuan Hu1,3、*
Author Affiliations
  • 1Chongqing University of Posts and Telecommunications, School of Communication and Information Engineering, Chongqing, 400065, China
  • 2Engineering Research Center of Mobile Communications of the Ministry of Education, Chongqing, 400065, China
  • 3Chongqing Key Laboratory of Mobile Communications Technology, Chongqing, 400065, China
  • show less
    Figures & Tables(16)
    Comparison of different loss functions
    Spectra of five ground objects in simulated data set
    Average SAD and RMSE on Jasper Ridge data set for different α and β
    Comparison of SSCNMF algorithm for extracting endmembers on Jasper Ridge data set with real endmembers
    Comparison of abundance maps on Jasper Ridge data set with real abundance maps by different algorithms
    Comparison of SSCNMF algorithm for extracting endmembers on Urban data set with real endmembers
    Comparison of abundance maps on Urban data set with real abundance maps by different algorithms
    • Table 1. SSCNMF algorithm process

      View table

      Table 1. SSCNMF algorithm process

      Input:hyperspectral image matrix R,parameters δα,and β

      Initialization:initialize end element matrix W0and abundance matrix H0 using VCA-FCLS;

      Step1:calculate error matrix Et=R-WtHtγt

      Step2:calculate auxiliary matrix Xijt=11+Eijt2

      Step3:calculate et=1L*NRij

      Step4:calculate γt+1=γt*1e0-1

      Step5:Xt cancel outliers to Xt+1

      Step6:applying ASC constraints Rf=Rδ1nTWf=Wδ1nTXf=Xδ1nT

      Step7:update abundance matrix Hkjt+1 according to Eq.(20)

      Step8:update error matrix Et+1=R-WtHt+1γt

      Step9:update auxiliary matrix Xijt+1=11+Eijt+12

      Step10:update element matrix Wikt+1 according to Eq.(22)

      Repeat above steps until stop condition is met;

      Output:element matrix W and abundance matrix H.

    • Table 2. SAD values after adding different levels of Gaussian white noise to each algorithm

      View table

      Table 2. SAD values after adding different levels of Gaussian white noise to each algorithm

      SNR /dBMVCNMFL1/2-NMFCauchy NMFSSRNMFSSWNMFSSCNMF
      100.25730.26740.24660.22130.21600.2042
      150.20410.19010.18430.15940.15650.1505
      200.16550.15180.15110.09130.09440.0889
      250.10980.09420.10350.08110.07350.0679
      300.09170.08860.08720.06410.05370.0503
    • Table 3. RMSE values after adding different levels of Gaussian white noise to each algorithm

      View table

      Table 3. RMSE values after adding different levels of Gaussian white noise to each algorithm

      SNR /dBMVCNMFL1/2-NMFCauchy NMFSSRNMFSSWNMFSSCNMF
      100.42740.41180.42080.34730.33580.3069
      150.37810.37100.35430.28730.25690.2381
      200.27180.25560.23710.15190.15010.1477
      250.14050.12890.14210.10880.09120.0784
      300.11750.10520.10560.07330.06980.0595
    • Table 4. SAD values after adding salt and pepper noise of different densities to each algorithm

      View table

      Table 4. SAD values after adding salt and pepper noise of different densities to each algorithm

      DMVCNMFL1/2-NMFCauchy NMFSSRNMFSSWNMFSSCNMF
      0.10.15650.14970.08310.09900.10740.0579
      0.20.19960.17550.14630.15290.14060.0892
      0.30.21360.24380.19860.18200.18850.1002
      0.40.38530.33130.29650.29990.27340.1282
    • Table 5. RMSE values after adding salt and pepper noise of different densities to each algorithm

      View table

      Table 5. RMSE values after adding salt and pepper noise of different densities to each algorithm

      DMVCNMFL1/2-NMFCauchy NMFSSRNMFSSWNMFSSCNMF
      0.10.12810.12090.10930.08910.08570.0567
      0.20.16870.15240.16780.13560.14260.0722
      0.30.23490.23880.21160.19820.20310.1274
      0.40.29680.27840.28490.25230.23820.1519
    • Table 6. SAD values of different algorithms on Jasper Ridge data set

      View table

      Table 6. SAD values of different algorithms on Jasper Ridge data set

      CategoryMVCNMFL1/2-NMFCauchy NMFSSRNMFSSWNMFSSCNMF
      Tree0.14740.13160.09130.12700.11120.1078
      Water0.11680.12390.12790.07920.08750.0558
      Soil0.08890.11790.10280.14570.08450.1203
      Road0.13580.11460.12560.12310.09810.0886
      Mean0.12240.12200.11190.11870.09530.0931
    • Table 7. RMSE values of different algorithms on Jasper Ridge data set

      View table

      Table 7. RMSE values of different algorithms on Jasper Ridge data set

      CategoryMVCNMFL1/2-NMFCauchy NMFSSRNMFSSWNMFSSCNMF
      Mean0.22230.20110.20220.18710.14310.1367
    • Table 8. SAD values of different algorithms on Urban data set

      View table

      Table 8. SAD values of different algorithms on Urban data set

      CategoryMVCNMFL1/2-NMFCauchy NMFSSRNMFSSWNMFSSCNMF
      Asphalt0.24450.35800.22670.27720.23100.1806
      Glass0.36830.33240.28630.21180.20270.2015
      Tree0.28740.19350.34730.13470.19650.2204
      Roof0.19040.14710.24810.19230.16180.1647
      Mean0.27270.25780.27710.20400.19800.1918
    • Table 9. RMSE values of different algorithms on Urban data set

      View table

      Table 9. RMSE values of different algorithms on Urban data set

      CategoryMVCNMFL1/2-NMFCauchy NMFSSRNMFSSWNMFSSCNMF
      Mean0.36290.34080.34260.32880.26230.2594
    Tools

    Get Citation

    Copy Citation Text

    Shanxue Chen, Zhiyuan Hu. Weighted Sparse Cauchy Nonnegative Matrix Factorization Hyperspectral Unmixing Based on Spatial-Spectral Constraints[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1028006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Dec. 23, 2021

    Accepted: Feb. 25, 2022

    Published Online: Apr. 24, 2023

    The Author Email: Zhiyuan Hu (308776453@qq.com)

    DOI:10.3788/LOP213319

    Topics