Chinese Journal of Lasers, Volume. 50, Issue 4, 0402009(2023)

Microstructure and Electrochemical Corrosion Properties of AlMgScZr Alloys Fabricated Using Selective Laser Melting

Tianchun Zou, Siyuan Mei*, and Minying Chen
Author Affiliations
  • College of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
  • show less
    References(34)

    [1] Aboulkhair N T, Simonelli M, Parry L et al. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science, 106, 100578(2019).

    [2] Zou T C, Zhu H, Chen M Y et al. Microstructure and tensile properties of SiC reinforced aluminum matrix composite prepared by selective laser melting[J]. Chinese Journal of Lasers, 48, 1002123(2021).

    [3] Maconachie T, Leary M, Lozanovski B et al. SLM lattice structures: properties, performance, applications and challenges[J]. Materials & Design, 183, 108137(2019).

    [4] Gao P, Lan X Q, Zhou Y X et al. Heat-treatment process of S-130 steel produced by selective laser melting[J]. Chinese Journal of Lasers, 49, 0202003(2022).

    [5] Li R D, Wang M B, Yuan T C et al. Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: processing, microstructure, and properties[J]. Powder Technology, 319, 117-128(2017).

    [6] Spierings A B, Dawson K, Heeling T et al. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting[J]. Materials & Design, 115, 52-63(2017).

    [7] Spierings A B, Dawson K, Uggowitzer P J et al. Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc- and Zr-modified Al-Mg alloys[J]. Materials & Design, 140, 134-143(2018).

    [8] Wang Z H, Lin X, Kang N et al. Making selective-laser-melted high-strength Al-Mg-Sc-Zr alloy tough via ultrafine and heterogeneous microstructure[J]. Scripta Materialia, 203, 114052(2021).

    [9] Li Y, Fan X D. Analysis and research on aircraft corrosion mechanism and thoughts on improving protection ability[J]. China Science and Technology Information, 33-34(2020).

    [10] Zou T C, Mei S Y, Chen M Y. Precipitation behavior, microstructure and mechanical properties of Al-4.8Mg-0.82Sc-0.28Zr alloy fabricated by selective laser melting[J]. Materials Science and Engineering: A, 840, 142949(2022).

    [11] Bayoumy D, Schliephake D, Dietrich S et al. Intensive processing optimization for achieving strong and ductile Al-Mn-Mg-Sc-Zr alloy produced by selective laser melting[J]. Materials & Design, 198, 109317(2021).

    [12] Shao H L, Lin Z X, Zhang Z et al. Selective laser melting process of titanium alloy based on single-track structure and linear and volumetric energy densities[J]. Laser & Optoelectronics Progress, 59, 0114007(2022).

    [13] Wang Y, Li H T, Fan Z Y. Oxidation of aluminium alloy melts and inoculation by oxide particles[J]. Transactions of the Indian Institute of Metals, 65, 653-661(2012).

    [14] Ren L S, Chen H, Chen Y et al. Microstructures and thermal fatigue performance of 24CrNiMo alloy steel formed by selective laser melting[J]. Chinese Journal of Lasers, 48, 2202004(2021).

    [15] Li P, Li R D, Yang H O et al. Selective laser melting of Al-3.48Cu-2.03Si-0.48Sc-0.28Zr alloy: microstructure evolution, properties and metallurgical defects[J]. Intermetallics, 129, 107008(2021).

    [16] Wang M, Song B, Wei Q S et al. Improved mechanical properties of AlSi7Mg/nano-SiCp composites fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 810, 151926(2019).

    [17] Zhang H, Gu D D, Dai D H et al. Influence of heat treatment on corrosion behavior of rare earth element Sc modified Al-Mg alloy processed by selective laser melting[J]. Applied Surface Science, 509, 145330(2020).

    [18] Li C, Pan Q L, Shi Y J et al. Influence of aging temperature on corrosion behavior of Al-Zn-Mg-Sc-Zr alloy[J]. Materials & Design, 55, 551-559(2014).

    [19] Feng X T, Gu H, Zhou S F et al. Microstructure and electrochemical corrosion behavior of TC4 titanium alloy cladding layer prepared with powder feeding laser additive manufacturing[J]. Chinese Journal of Lasers, 46, 0302003(2019).

    [20] Yang Y, Chen Y, Zhang J X et al. Improved corrosion behavior of ultrafine-grained eutectic Al-12Si alloy produced by selective laser melting[J]. Materials & Design, 146, 239-248(2018).

    [21] Duan Z W, Man C, Dong C F et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: Pitting mechanism induced by gas pores[J]. Corrosion Science, 167, 108520(2020).

    [22] Hirschorn B, Orazem M E, Tribollet B et al. Determination of effective capacitance and film thickness from constant-phase-element parameters[J]. Electrochimica Acta, 55, 6218-6227(2010).

    [23] Zhao Y, Song Z M, Jin J B et al. Electrochemical corrosion properties of Ti-5%TiN composites formed by selective laser melting in hank's solution[J]. Chinese Journal of Lasers, 46, 0902005(2019).

    [24] Gu D D, Zhang H, Dai D H et al. Anisotropic corrosion behavior of Sc and Zr modified Al-Mg alloy produced by selective laser melting[J]. Corrosion Science, 170, 108657(2020).

    [25] Shekar V, Campbell M, Akella S. Towards automated optoelectrowetting on dielectric devices for multi-axis droplet manipulation[C], 1439-1445(2013).

    [26] Luo S C, Huang W P, Yang H H et al. Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments[J]. Additive Manufacturing, 30, 100875(2019).

    [27] Li R D, Wang M B, Li Z M et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms[J]. Acta Materialia, 193, 83-98(2020).

    [28] Zhang H, Gu D D, Yang J K et al. Selective laser melting of rare earth element Sc modified aluminum alloy: thermodynamics of precipitation behavior and its influence on mechanical properties[J]. Additive Manufacturing, 23, 1-12(2018).

    [29] Lu J L, Lin X, Kang N et al. Characterizations of micro-nano structure and tensile properties of a Sc modified AlMn alloy fabricated by selective laser melting[J]. Materials Characterization, 178, 111305(2021).

    [30] Luo J, Zhang Y, Zhong Q D et al. Influence of grain size on corrosion resistant of commonly used metals[J]. Corrosion & Protection, 33, 349-352, 356(2012).

    [31] Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals[J]. Scripta Materialia, 63, 1201-1204(2010).

    [32] Ralston K D, Fabijanic D, Birbilis N. Effect of grain size on corrosion of high purity aluminium[J]. Electrochimica Acta, 56, 1729-1736(2011).

    [33] Chen Y, Yin Z X, Fan X B. Study on corrosion property of 5052 aluminium alloy with ultrafine-grained surface[J]. Hot Working Technology, 39, 7-9(2010).

    [34] Liu Z Y, Zhao M, Wang X L et al. Effect of grain boundaries on the corrosion resistance of aluminum alloys[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 43, 57-62(2016).

    Tools

    Get Citation

    Copy Citation Text

    Tianchun Zou, Siyuan Mei, Minying Chen. Microstructure and Electrochemical Corrosion Properties of AlMgScZr Alloys Fabricated Using Selective Laser Melting[J]. Chinese Journal of Lasers, 2023, 50(4): 0402009

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser manufacturing

    Received: Apr. 7, 2022

    Accepted: Jun. 6, 2022

    Published Online: Feb. 2, 2023

    The Author Email: Mei Siyuan (2020131005@cauc.edu.cn)

    DOI:10.3788/CJL220736

    Topics