Chinese Journal of Liquid Crystals and Displays, Volume. 37, Issue 2, 199(2022)
Research progress in processing methods of reversible three-dimensional structures of liquid-crystalline elastomers based on dynamic covalent bonds
[1] [1] MISTRY D, TRAUGUTT N A, YU K, et al. Processing and reprocessing liquid crystal elastomer actuators [J]. Journal of Applied Physics, 2021, 129(13): 130901.
[2] [2] HERBERT K M, FOWLER H E, MCCRACKEN J M, et al. Synthesis and alignment of liquid crystalline elastomers [J]. Nature Reviews Materials, 2021, doi: 10.1038/s41578-021-00359-z.
[3] [3] SAED M O, GABLIER A, TERENTJEV E M. Exchangeable liquid crystalline elastomers and their applications [J]. Chemical Reviews, 2021, doi: 10.1021/acs.chemrev.0c01057.
[4] [4] UBE T. Development of novel network structures in crosslinked liquid-crystalline polymers [J]. Polymer Journal, 2019, 51(10): 983-988.
[5] [5] KULARATNE R S, KIM H, BOOTHBY J M, et al. Liquid crystal elastomer actuators: synthesis, alignment, and applications [J]. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55(5): 395-411.
[6] [6] WHITE T J, BROER D J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers [J]. Nature Materials, 2015, 14(11): 1087-1098.
[7] [7] JIANG H R, LI C S, HUANG X Z. Actuators based on liquid crystalline elastomer materials [J]. Nanoscale, 2013, 5(12): 5225-5240.
[8] [8] OHM C, BREHMER M, ZENTEL R. Liquid crystalline elastomers as actuators and sensors [J]. Advanced Materials, 2010, 22(31): 3366-3387.
[9] [9] YU Y L, IKEDA T. Soft actuators based on liquid-crystalline elastomers [J]. Angewandte Chemie International Edition, 2006, 45(33): 5416-5418.
[11] [11] KPFER J, FINKELMANN H. Nematic liquid single crystal elastomers [J]. Die Makromolekulare Chemie, Rapid Communications, 1991, 12(12): 717-726.
[12] [12] SCHUHLADEN S, PRELLER F, RIX R, et al. Iris-like tunable aperture employing liquid-crystal elastomers [J]. Advanced Materials, 2014, 26(42): 7247-7251.
[13] [13] BUGUIN A, LI M H, SILBERZAN P, et al. Micro-actuators: when artificial muscles made of nematic liquid crystal elastomers meet soft lithography [J]. Journal of the American Chemical Society, 2006, 128(4): 1088-1089.
[14] [14] THOMSEN D L, KELLER P, NACIRI J, et al. Liquid crystal elastomers with mechanical properties of a muscle [J]. Macromolecules, 2001, 34(17): 5868-5875.
[15] [15] VAN OOSTEN C L, BASTIAANSEN C W M, BROER D J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light [J]. Nature Materials, 2009, 8(8): 677-682.
[16] [16] YANG H, BUGUIN A, TAULEMESSE J M, et al. Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions [J]. Journal of the American Chemical Society, 2009, 131(41): 15000-15004.
[17] [17] OHM C, SERRA C, ZENTEL R. A continuous flow synthesis of micrometer-sized actuators from liquid crystalline elastomers [J]. Advanced Materials, 2009, 21(47): 4859-4862.
[18] [18] AMBULO C P, BURROUGHS J J, BOOTHBY J M, et al. Four-dimensional printing of liquid crystal elastomers [J]. ACS Applied Materials & Interfaces, 2017, 9(42): 37332-37339.
[20] [20] ZHANG Y B, WANG Z H, YANG Y, et al. Seamless multimaterial 3D liquid-crystalline elastomer actuators for next-generation entirely soft robots [J]. Science Advances, 2020, 6(9): 8606.
[21] [21] YAKACKI C M, SAED M, NAIR D P, et al. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol-acrylate reaction [J]. RSC Advances, 2015, 5(25): 18997-19001.
[22] [22] PEI Z Q, YANG Y, CHEN Q M, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds [J]. Nature Materials, 2014, 13(1): 36-41.
[23] [23] SCHMITT F, PICCIN O, BARB L, et al. Soft robots manufacturing: a review [J]. Frontiers in Robotics and AI, 2018, 5: 84.
[25] [25] LI Z, YANG Y, WANG Z H, et al. Polydopamine nanoparticles doped in liquid crystal elastomers for producing dynamic 3D structures [J]. Journal of Materials Chemistry A, 2017, 5(14): 6740-6746.
[26] [26] UBE T, KAWASAKI K, IKEDA T. Photomobile liquid-crystalline elastomers with rearrangeable networks [J]. Advanced Materials, 2016, 28(37): 8212-8217.
[27] [27] LI Y Z, RIOS O, KEUM J K, et al. Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds [J]. ACS Applied Materials & Interfaces, 2016, 8(24): 15750-15757.
[28] [28] GABLIER A, SAED M O, TERENTJEV E M. Transesterification in epoxy-thiol exchangeable liquid crystalline elastomers [J]. Macromolecules, 2020, 53(19): 8642-8649.
[29] [29] SAED M O, TERENTJEV E M. Siloxane crosslinks with dynamic bond exchange enable shape programming in liquid-crystalline elastomers [J]. Scientific Reports, 2020, 10(1): 6609.
[30] [30] CHEN Q M, LI Y S, YANG Y, et al. Durable liquid-crystalline vitrimer actuators [J]. Chemical Science, 2019, 10(10): 3025-3030.
[31] [31] YANG Y, TERENTJEV E M, ZHANG Y B, et al. Reprocessable thermoset soft actuators [J]. Angewandte Chemie International Edition, 2019, 58(48): 17474-17479.
[32] [32] WU Y H, YANG Y, QIAN X J, et al. Liquid-crystalline soft actuators with switchable thermal reprogrammability [J]. Angewandte Chemie International Edition, 2020, 59(12): 4778-4784.
[33] [33] JIANG Z C, XIAO Y Y, YIN L, et al. “Self-lockable” liquid crystalline Diels-Alder dynamic network actuators with room temperature programmability and solution reprocessability [J]. Angewandte Chemie International Edition, 2020, 132(12): 4955-4961.
[34] [34] BERTO P, POINTET A, LE COZ C, et al. Recyclable telechelic cross-linked polybutadiene based on reversible Diels-Alder chemistry [J]. Macromolecules, 2018, 51(3): 651-659.
[35] [35] BAI J, LI H, SHI Z X, et al. An eco-friendly scheme for the cross-linked polybutadiene elastomer via thiol-ene and Diels-Alder click chemistry [J]. Macromolecules, 2015, 48(11): 3539-3546.
[36] [36] POLGAR L M, VAN DUIN M, BROEKHUIS A A, et al. Use of Diels-Alder chemistry for thermoreversible cross-linking of rubbers: the next step toward recycling of rubber products? [J]. Macromolecules, 2015, 48(19): 7096-7105.
[37] [37] LIU X X, DU P F, LIU L, et al. Kinetic study of Diels-Alder reaction involving in maleimide-furan compounds and linear polyurethane [J]. Polymer Bulletin, 2013, 70(8): 2319-2335.
[38] [38] WANG Z J, HE Q G, WANG Y, et al. Programmable actuation of liquid crystal elastomers via “living” exchange reaction [J]. Soft Matter, 2019, 15(13): 2811-2816.
[39] [39] MICHAL B T, JAYE C A, SPENCER E J, et al. Inherently photohealable and thermal shape-memory polydisulfide networks [J]. ACS Macro Letters, 2013, 2(8): 694-699.
[40] [40] CANADELL J, GOOSSENS H, KLUMPERMAN B. Self-healing materials based on disulfide links [J]. Macromolecules, 2011, 44(8): 2536-2541.
[41] [41] FAIRBANKS B D, SINGH S P, BOWMAN C N, et al. Photodegradable, photoadaptable hydrogels via radical-mediated disulfide fragmentation reaction [J]. Macromolecules, 2011, 44(8): 2444-2450.
[42] [42] WEN Z B, MCBRIDE M K, ZHANG X P, et al. Reconfigurable LC elastomers: using a thermally programmable monodomain to access two-way free-standing multiple shape memory polymers [J]. Macromolecules, 2018, 51(15): 5812-5819.
[43] [43] YANG Y, PEI Z Q, LI Z, et al. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold [J]. Journal of the American Chemical Society, 2016, 138(7): 2118-2121.
[44] [44] CHEN Q M, WEI Y, JI Y. Photo-responsive liquid crystalline vitrimer containing oligoanilines [J]. Chinese Chemical Letters, 2017, 28(11): 2139-2142.
[45] [45] MCBRIDE M K, HENDRIKX M, LIU D Q, et al. Photoinduced plasticity in cross-linked liquid crystalline networks [J]. Advanced Materials, 2017, 29(17): 1606509.
[46] [46] QIAN X J, CHEN Q M, YANG Y, et al. Untethered recyclable tubular actuators with versatile locomotion for soft continuum robots [J]. Advanced Materials, 2018, 30(29): 1801103.
[47] [47] MCBRIDE M K, MARTINEZ A M, COX L, et al. A readily programmable, fully reversible shape-switching material [J]. Science Advances, 2018, 4(8): eaat4634.
[48] [48] FRISCH H, MARSCHNER D E, GOLDMANN A S, et al. Wavelength-gated dynamic covalent chemistry [J]. Angewandte Chemie International Edition, 2018, 57(8): 2036-2045.
[49] [49] WANG L, YANG X F, CHEN H M, et al. Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups [J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10520-10528.
[50] [50] WANG Z J, TIAN H M, HE Q G, et al. Reprogrammable, reprocessible, and self-healable liquid crystal elastomer with exchangeable disulfide bonds [J]. ACS Applied Materials & Interfaces, 2017, 9(38): 33119-33128.
[51] [51] JIANG Z C, XIAO Y Y, TONG X, et al. Selective decrosslinking in liquid crystal polymer actuators for optical reconfiguration of origami and light-fueled locomotion [J]. Angewandte Chemie International Edition, 2019, 131(16): 5386-5391.
[52] [52] XIAO Y Y, JIANG Z C, TONG X, et al. Biomimetic locomotion of electrically powered “Janus” soft robots using a liquid crystal polymer [J]. Advanced Materials, 2019, 31(36): 1903452.
[53] [53] ZUO B, WANG M, LIN B P, et al. Visible and infrared three-wavelength modulated multi-directional actuators [J]. Nature Communications, 2019, 10(1): 4539.
[54] [54] LI X, MA S D, HU J, et al. Photo-activated bimorph composites of Kapton and liquid-crystalline polymer towards biomimetic circadian rhythms of Albizia julibrissin leaves [J]. Journal of Materials Chemistry C, 2019, 7(3): 622-629.
[55] [55] ZUO B, WANG M, LIN B P, et al. Photomodulated tricolor-changing artificial flowers [J]. Chemistry of Materials, 2018, 30(21): 8079-8088.
[56] [56] GE F J, YANG R, TONG X, et al. A multifunctional dye-doped liquid crystal polymer actuator: light-guided transportation, turning in locomotion, and autonomous motion [J]. Angewandte Chemie International Edition, 2018, 130(36): 11932-11937.
[57] [57] WANG M, LIN B P, YANG H. A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes [J]. Nature Communications, 2016, 7: 13981.
[58] [58] AGRAWAL A, YUN T, PESEK S L, et al. Shape-responsive liquid crystal elastomer bilayers [J]. Soft Matter, 2014, 10(9): 1411-1415.
[59] [59] DE HAAN L T, VERJANS J M N, BROER D J, et al. Humidity-responsive liquid crystalline polymer actuators with an asymmetry in the molecular trigger that bend, fold, and curl [J]. Journal of the American Chemical Society, 2014, 136(30): 10585-10588.
[60] [60] DAI M, PICOT O T, VERJANS J M, et al. Humidity-responsive bilayer actuators based on a liquid-crystalline polymer network [J]. ACS Applied Materials & Interfaces, 2013, 5(11): 4945-4950.
[61] [61] BOOTHBY J M, WARE T H. Dual-responsive, shape-switching bilayers enabled by liquid crystal elastomers [J]. Soft Matter, 2017, 13(24): 4349-4356.
[62] [62] SAED M O, GABLIER A, TERENTEJV E M. Liquid crystalline vitrimers with full or partial boronic-ester bond exchange [J]. Advanced Functional Materials, 2020, 30(3): 1906458.
[63] [63] CHEN L, CHU D, CHENG Z A, et al. Designing seamless-welded liquid-crystalline soft actuators with a “glue-free” method by dynamic boroxines [J]. Polymer, 2020, 208: 122962.
[64] [64] CHEN L, BISOYI H K, HUANG Y L, et al. Healable and rearrangeable networks of liquid crystal elastomers enabled by diselenide bonds [J]. Angewandte Chemie International Edition, 2021, 60(30): 16394-16398.
[65] [65] CHEN L, WANG M, GUO L X, et al. A cut-and-paste strategy towards liquid crystal elastomers with complex shape morphing [J]. Journal of Materials Chemistry C, 2018, 6(30): 8251-8257.
[66] [66] LU X L, GUO S W, TONG X, et al. Tunable photocontrolled motions using stored strain energy in malleable azobenzene liquid crystalline polymer actuators [J]. Advanced Materials, 2017, 29(28): 1606467.
[67] [67] CHEN Q M, LI W W, WEI Y, et al. Reprogrammable 3D liquid-crystalline actuators with precisely controllable stepwise actuation [J]. Advanced Intelligent Systems, 2021, 3(8): 2000249.
Get Citation
Copy Citation Text
ZHANG Yu-bai, JI Yan. Research progress in processing methods of reversible three-dimensional structures of liquid-crystalline elastomers based on dynamic covalent bonds[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(2): 199
Category:
Received: Nov. 30, 2021
Accepted: --
Published Online: Mar. 1, 2022
The Author Email: ZHANG Yu-bai (zhangyubai.ripp@sinopec.com)