Chinese Optics Letters, Volume. 19, Issue 11, 111601(2021)
Mid-infrared flat-topped broadband chiral helix metamaterials based on indium tin oxide and their chiral properties
[1] N. M. Estakhri, B. Edwards, N. Engheta. Inverse-designed metastructures that solve equations. Science, 363, 1333(2019).
[2] L. L. Spada, L. Vegni. Near-zero-index wires. Opt. Express, 25, 23699(2017).
[3] J. Y. Xiao, R. W. Xiao, R. X. Zhang, Z. X. Shen, W. Hu, L. Wang, Y. Q. Lu. Tunable terahertz absorber based on transparent and flexible metamaterial. Chin. Opt. Lett., 18, 092403(2020).
[4] N. J. Greybush, V. Pacheco-Peña, N. Engheta, C. B. Murray, C. R. Kagan. Plasmonic optical and chiroptical response of self-assembled Au nanorod equilateral trimers. ACS Nano, 13, 3875(2019).
[5] H. A. Atwater. The promise of plasmonics. Sci. Am., 296, 56(2007).
[6] F. Mattioli, G. Mazzeo, G. Longhi, S. Abbate, G. Pellegrini, E. Mogni, M. Celebrano, M. Finazzi, L. Duo, C. G. Zanchi, M. Tommasini, M. Pea, S. Cibella, R. Polito, F. Sciortino, L. Baldassarre, A. Nucara, M. Ortolani, P. Biagioni. Plasmonic superchiral lattice resonances in the mid-infrared. ACS Photon., 7, 2676(2020).
[7] I. H. Lee, D. Yoo, P. Avouris, T. Low, S. H. Oh. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol., 14, 313(2019).
[8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).
[9] J. H. Hu, J. Fu, X. H. Liu, D. P. Ren, J. J. Zhao, Y. Q. Huang. Perfect absorption in a monolayer graphene at the near-infrared using a compound waveguide grating by robust critical coupling. Chin. Opt. Lett., 17, 010501(2019).
[10] L. L. Spada, C. Spooner, S. Haq, Y. Hao. Curvilinear meta surfaces for surface wave manipulation. Sci. Rep., 9, 3107(2019).
[11] N. Meinzer, W. L. Barnes, I. R. Hooper. Plasmonic meta-atoms and metasurfaces. Nat. Photonics, 8, 889(2014).
[12] A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E.-M. Roller, A. Hogele, C. Friedrich, F. C. Simmel, A. O. Govorov, T. Liedl. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature, 483, 311(2012).
[13] Z. Lalegani, S. A. S. Ebrahimi, B. Hamawandi, L. L. Spada, M. S. Topark. Modeling, design, and synthesis of gram-scale monodispersed silver nanoparticles using microwave-assisted polyol process for metamaterial applications. Opt. Mater., 108, 110381(2020).
[14] R. Knipper, V. Kopecký, U. Huebner, J. Popp, T. G. Mayerhöfer. Slit-enhanced chiral- and broadband infrared ultra-sensing. ACS Photon., 5, 3238(2018).
[15] K. Tanaka, D. Arslan, S. Fasold, M. Steinert, J. Sautter, M. Falkner, T. Pertsch, M. Decker, I. Staude. Chiral bilayer all-dielectric metasurfaces. ACS Nano, 14, 15926(2020).
[16] K. Höflich, T. Feichtner, E. Hansjürgen, C. Haverkamp, H. Kollmann, C. Lienau, M. Silies. Resonant behavior of a single plasmonic helix. Optica, 6, 1098(2019).
[17] C. He, T. Sun, J. J. Guo, M. Cao, J. Xia, J. P. Hu, Y. Yan, C. H. Wang. Metalens of circular polarization dichroism with helical surface arrays in mid-infrared region. Adv. Opt. Mater., 7, 1901129(2019).
[18] L. K. Khorashad, L. V. Besteiro, M. A. Correa-Duarte, S. Burger, Z. M. Wang, A. O. Govorov. Hot electrons generated in chiral plasmonic nanocrystals as a mechanism for surface photochemistry and chiral growth. J. Am. Chem. Soc., 142, 4193(2020).
[19] S. Droulias, L. Bougas. Surface plasmon platform for angle-resolved chiral sensing. ACS Photon., 6, 1485(2019).
[20] J. Kaschke, M. Blome, S. Burger, M. Wegener. Tapered N-helical metamaterials with three-fold rotational symmetryas improved circular polarizers. Opt. Express, 22, 19936(2014).
[21] J. Zhang, R. Tu, C. Huang, X. L. Yao, X. Hu, H. X. Ge, X. F. Zhang. Chiral plasmonic nanostructure of twistedly stacked nanogaps. Chin. Opt. Lett., 19, 013601(2021).
[22] A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phy. Rev. Lett., 97, 177401(2006).
[23] S. Zhang, Y. S. Park, J. Li, X. Li, W. Zhang, X. Zhang. Negative refractive index in chiral metamaterials. Phys. Rev. Lett., 102, 023901(2009).
[24] Y. Fang, R. Verre, L. Shao, P. Nordlander, M. Käll. Hot electron generation and cathodoluminescence nanoscopy of chiral split ring resonators. Nano Lett., 16, 5183(2016).
[25] T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, Z. Zhang. Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition. J. Phys. Chem. C, 121, 1299(2017).
[26] Y. Z. He, G. K. Larsen, W. Ingram, Y. P. Zhao. Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers. Nano Lett., 14, 1976(2014).
[27] Y. Z. He, K. Lawrence, W. Ingram, Y. P. Zhao. Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device. ACS Photon., 2, 1246(2015).
[28] R. Kolkowski, L. Petti, M. Rippa, C. Lafargue, J. Zyss. Octupolar plasmonic meta-molecules for nonlinear chiral watermarking at subwavelength scale. ACS Photon., 2, 899(2015).
[29] V. E. Bochenkov, D. S. Sutherland. Chiral plasmonic nanocrescents: large-area fabrication and optical properties. Opt. Express, 26, 27101(2018).
[30] A. G. Mark, J. G. Gibbs, T. C. Lee, P. Fischer. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater., 12, 802(2013).
[31] C. R. Han, L. C. Yang, P. Ye, E. P. J. Parrott, E. Pickwell-Macpherson, W. Y. Tam. Three dimensional chiral plasmon rulers based on silver nanorod trimers. Opt. Express, 26, 10315(2018).
[32] E. S. A. Goerlitzer, R. Mohammadi, S. Nechayev, P. Banzer, N. Vogel. Large-area 3D plasmonic crescents with tunable chirality. Adv. Opt. Mater., 7, 1801770(2019).
[33] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, M. Wegener. Gold helix photonic metamaterial as broadband circular polarizer. Science, 325, 1513(2009).
[34] M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, R. Hillenbrand. Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces. Nano Lett., 16, 663(2016).
[35] S. J. Zhang, Y. Li, Z. P. Liu, J. L. Ren, Y. F. Xiao, H. Yang, Q. Gong. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum. Appl. Phy. Lett., 105, 061101(2014).
[36] Y. L. Zhu, B. W. Cao, J. W. Li, Y. Wu, A. X. Lu, L. Y. Qian, C. Q. Han, C. C. Yan. L-shaped ITO structures fabricated by oblique angle deposition technique for mid-infrared circular dichroism. Opt. Express, 27, 33243(2019).
[37] G. V. Naik, V. M. Shalaev, A. Boltasseva. Alternative plasmonic materials: beyond gold and silver. Adv. Mater., 25, 3264(2013).
[38] K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, M. Wegener. Tapered gold-helix metamaterials as improved circular polarizers. Appl. Phy. Lett., 100, 101109(2012).
[39] K. Johannes, M. Wegener. Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography. Opt. Lett., 40, 3986(2015).
[40] E. D. Palik. Handbook of Optical Constants of Solids(1997).
[41] C. Menzel, C. Rockstuhl, F. Lederer. Advanced Jones calculus for the classification of periodic metamaterials. Phys. Rev. A, 82, 053811(2010).
Get Citation
Copy Citation Text
Wentao Zhang, Weijie Shi, Hui Guo, Changchun Yan, "Mid-infrared flat-topped broadband chiral helix metamaterials based on indium tin oxide and their chiral properties," Chin. Opt. Lett. 19, 111601 (2021)
Category: Optical Materials
Received: Feb. 13, 2021
Accepted: Apr. 15, 2021
Posted: Apr. 16, 2021
Published Online: Aug. 26, 2021
The Author Email: Changchun Yan (yancc@jsnu.edu.cn)