Chinese Optics Letters, Volume. 19, Issue 11, 111601(2021)

Mid-infrared flat-topped broadband chiral helix metamaterials based on indium tin oxide and their chiral properties

Wentao Zhang1, Weijie Shi2, Hui Guo2, and Changchun Yan2、*
Author Affiliations
  • 1School of Physics and New Energy, Xuzhou Institute of Technology, Xuzhou 221018, China
  • 2Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
  • show less
    References(41)

    [1] N. M. Estakhri, B. Edwards, N. Engheta. Inverse-designed metastructures that solve equations. Science, 363, 1333(2019).

    [2] L. L. Spada, L. Vegni. Near-zero-index wires. Opt. Express, 25, 23699(2017).

    [3] J. Y. Xiao, R. W. Xiao, R. X. Zhang, Z. X. Shen, W. Hu, L. Wang, Y. Q. Lu. Tunable terahertz absorber based on transparent and flexible metamaterial. Chin. Opt. Lett., 18, 092403(2020).

    [4] N. J. Greybush, V. Pacheco-Peña, N. Engheta, C. B. Murray, C. R. Kagan. Plasmonic optical and chiroptical response of self-assembled Au nanorod equilateral trimers. ACS Nano, 13, 3875(2019).

    [5] H. A. Atwater. The promise of plasmonics. Sci. Am., 296, 56(2007).

    [6] F. Mattioli, G. Mazzeo, G. Longhi, S. Abbate, G. Pellegrini, E. Mogni, M. Celebrano, M. Finazzi, L. Duo, C. G. Zanchi, M. Tommasini, M. Pea, S. Cibella, R. Polito, F. Sciortino, L. Baldassarre, A. Nucara, M. Ortolani, P. Biagioni. Plasmonic superchiral lattice resonances in the mid-infrared. ACS Photon., 7, 2676(2020).

    [7] I. H. Lee, D. Yoo, P. Avouris, T. Low, S. H. Oh. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat. Nanotechnol., 14, 313(2019).

    [8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).

    [9] J. H. Hu, J. Fu, X. H. Liu, D. P. Ren, J. J. Zhao, Y. Q. Huang. Perfect absorption in a monolayer graphene at the near-infrared using a compound waveguide grating by robust critical coupling. Chin. Opt. Lett., 17, 010501(2019).

    [10] L. L. Spada, C. Spooner, S. Haq, Y. Hao. Curvilinear meta surfaces for surface wave manipulation. Sci. Rep., 9, 3107(2019).

    [11] N. Meinzer, W. L. Barnes, I. R. Hooper. Plasmonic meta-atoms and metasurfaces. Nat. Photonics, 8, 889(2014).

    [12] A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E.-M. Roller, A. Hogele, C. Friedrich, F. C. Simmel, A. O. Govorov, T. Liedl. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature, 483, 311(2012).

    [13] Z. Lalegani, S. A. S. Ebrahimi, B. Hamawandi, L. L. Spada, M. S. Topark. Modeling, design, and synthesis of gram-scale monodispersed silver nanoparticles using microwave-assisted polyol process for metamaterial applications. Opt. Mater., 108, 110381(2020).

    [14] R. Knipper, V. Kopecký, U. Huebner, J. Popp, T. G. Mayerhöfer. Slit-enhanced chiral- and broadband infrared ultra-sensing. ACS Photon., 5, 3238(2018).

    [15] K. Tanaka, D. Arslan, S. Fasold, M. Steinert, J. Sautter, M. Falkner, T. Pertsch, M. Decker, I. Staude. Chiral bilayer all-dielectric metasurfaces. ACS Nano, 14, 15926(2020).

    [16] K. Höflich, T. Feichtner, E. Hansjürgen, C. Haverkamp, H. Kollmann, C. Lienau, M. Silies. Resonant behavior of a single plasmonic helix. Optica, 6, 1098(2019).

    [17] C. He, T. Sun, J. J. Guo, M. Cao, J. Xia, J. P. Hu, Y. Yan, C. H. Wang. Metalens of circular polarization dichroism with helical surface arrays in mid-infrared region. Adv. Opt. Mater., 7, 1901129(2019).

    [18] L. K. Khorashad, L. V. Besteiro, M. A. Correa-Duarte, S. Burger, Z. M. Wang, A. O. Govorov. Hot electrons generated in chiral plasmonic nanocrystals as a mechanism for surface photochemistry and chiral growth. J. Am. Chem. Soc., 142, 4193(2020).

    [19] S. Droulias, L. Bougas. Surface plasmon platform for angle-resolved chiral sensing. ACS Photon., 6, 1485(2019).

    [20] J. Kaschke, M. Blome, S. Burger, M. Wegener. Tapered N-helical metamaterials with three-fold rotational symmetryas improved circular polarizers. Opt. Express, 22, 19936(2014).

    [21] J. Zhang, R. Tu, C. Huang, X. L. Yao, X. Hu, H. X. Ge, X. F. Zhang. Chiral plasmonic nanostructure of twistedly stacked nanogaps. Chin. Opt. Lett., 19, 013601(2021).

    [22] A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phy. Rev. Lett., 97, 177401(2006).

    [23] S. Zhang, Y. S. Park, J. Li, X. Li, W. Zhang, X. Zhang. Negative refractive index in chiral metamaterials. Phys. Rev. Lett., 102, 023901(2009).

    [24] Y. Fang, R. Verre, L. Shao, P. Nordlander, M. Käll. Hot electron generation and cathodoluminescence nanoscopy of chiral split ring resonators. Nano Lett., 16, 5183(2016).

    [25] T. Fu, Y. Qu, T. Wang, G. Wang, Y. Wang, H. Li, J. Li, L. Wang, Z. Zhang. Tunable chiroptical response of chiral plasmonic nanostructures fabricated with chiral templates through oblique angle deposition. J. Phys. Chem. C, 121, 1299(2017).

    [26] Y. Z. He, G. K. Larsen, W. Ingram, Y. P. Zhao. Tunable three-dimensional helically stacked plasmonic layers on nanosphere monolayers. Nano Lett., 14, 1976(2014).

    [27] Y. Z. He, K. Lawrence, W. Ingram, Y. P. Zhao. Strong local chiroptical response in racemic patchy silver films: enabling a large-area chiroptical device. ACS Photon., 2, 1246(2015).

    [28] R. Kolkowski, L. Petti, M. Rippa, C. Lafargue, J. Zyss. Octupolar plasmonic meta-molecules for nonlinear chiral watermarking at subwavelength scale. ACS Photon., 2, 899(2015).

    [29] V. E. Bochenkov, D. S. Sutherland. Chiral plasmonic nanocrescents: large-area fabrication and optical properties. Opt. Express, 26, 27101(2018).

    [30] A. G. Mark, J. G. Gibbs, T. C. Lee, P. Fischer. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater., 12, 802(2013).

    [31] C. R. Han, L. C. Yang, P. Ye, E. P. J. Parrott, E. Pickwell-Macpherson, W. Y. Tam. Three dimensional chiral plasmon rulers based on silver nanorod trimers. Opt. Express, 26, 10315(2018).

    [32] E. S. A. Goerlitzer, R. Mohammadi, S. Nechayev, P. Banzer, N. Vogel. Large-area 3D plasmonic crescents with tunable chirality. Adv. Opt. Mater., 7, 1801770(2019).

    [33] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, M. Wegener. Gold helix photonic metamaterial as broadband circular polarizer. Science, 325, 1513(2009).

    [34] M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, R. Hillenbrand. Real-space mapping of the chiral near-field distributions in spiral antennas and planar metasurfaces. Nano Lett., 16, 663(2016).

    [35] S. J. Zhang, Y. Li, Z. P. Liu, J. L. Ren, Y. F. Xiao, H. Yang, Q. Gong. Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum. Appl. Phy. Lett., 105, 061101(2014).

    [36] Y. L. Zhu, B. W. Cao, J. W. Li, Y. Wu, A. X. Lu, L. Y. Qian, C. Q. Han, C. C. Yan. L-shaped ITO structures fabricated by oblique angle deposition technique for mid-infrared circular dichroism. Opt. Express, 27, 33243(2019).

    [37] G. V. Naik, V. M. Shalaev, A. Boltasseva. Alternative plasmonic materials: beyond gold and silver. Adv. Mater., 25, 3264(2013).

    [38] K. Gansel, M. Latzel, A. Frolich, J. Kaschke, M. Thiel, M. Wegener. Tapered gold-helix metamaterials as improved circular polarizers. Appl. Phy. Lett., 100, 101109(2012).

    [39] K. Johannes, M. Wegener. Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography. Opt. Lett., 40, 3986(2015).

    [40] E. D. Palik. Handbook of Optical Constants of Solids(1997).

    [41] C. Menzel, C. Rockstuhl, F. Lederer. Advanced Jones calculus for the classification of periodic metamaterials. Phys. Rev. A, 82, 053811(2010).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Wentao Zhang, Weijie Shi, Hui Guo, Changchun Yan, "Mid-infrared flat-topped broadband chiral helix metamaterials based on indium tin oxide and their chiral properties," Chin. Opt. Lett. 19, 111601 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Materials

    Received: Feb. 13, 2021

    Accepted: Apr. 15, 2021

    Posted: Apr. 16, 2021

    Published Online: Aug. 26, 2021

    The Author Email: Changchun Yan (yancc@jsnu.edu.cn)

    DOI:10.3788/COL202119.111601

    Topics