Chinese Journal of Lasers, Volume. 47, Issue 12, 1204007(2020)

Inverse Depth Adaptive Weighting Based Multi-View Triangulation Method

Fang Wei1、* and Yang Kui2
Author Affiliations
  • 1School of Automation, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2School of Instrumentation Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China
  • show less
    Figures & Tables(9)
    Schematic diagram of triangulation description
    Implementation process of our method
    Synthetic datasets for multi-view triangulation. (a) Type A; (b) type B; (c) type C
    Iteration performance at different noise levels
    Multi-view triangulation results of our method under the public datasets. (a) Lund Cathedral; (b) Aos Hus; (c) San Marco; (d) Orebro Castle; (e) Buddah Statue; (f) East Indiaman Goteborg; (g) Ystad Monestary; (h) Round Church; (i) Skansen Kronan; (j) Skansen Lejonet
    Number of iterations of our method for multi-view triangulation in public datasets
    • Table 1. Results obtained by the multi-view triangulation method based on simulation data

      View table

      Table 1. Results obtained by the multi-view triangulation method based on simulation data

      σ /pixelMethodType AType BType C
      Time /s3D error /m2D error /pixelTime /s3D error /m2D error /pixelTime /s3D error /m2D error /pixel
      Midpoint0.6480.0236.1072.5210.0215.9450.8530.0175.825
      6Ours1.7610.0175.7285.9710.0185.9382.2510.0165.801
      L2Rep2.9960.0155.70411.6680.0175.9364.0050.0165.797
      Midpoint0.6170.04512.2442.4620.05911.9410.8100.03611.652
      12Ours1.8020.03111.6695.6750.03711.8832.0680.03111.595
      L2Rep2.8410.03011.62011.6780.03511.8793.9330.02911.582
      Midpoint0.6030.09425.9532.5780.20824.2780.8490.07823.498
      24Ours1.9140.06323.0097.1910.07423.7812.3820.06423.216
      L2Rep3.2240.05922.90514.9650.07123.7734.0170.05923.180
    • Table 2. Results of different methods based on Lund's public dataset

      View table

      Table 2. Results of different methods based on Lund's public dataset

      DatasetTime /sMean 2D reprojection errors /pixel
      IDViewPointMidpointOursL2RepMeanVariance
      MidpointOursL2RepMidpointOursL2Rep
      1120815905523.08243.01491.9101.0881.0781.0770.2170.2060.205
      280035413422.30345.27393.0630.8160.8050.8050.3020.2890.287
      3149823150733.78666.944134.2050.8070.7990.7980.3310.3160.315
      47615385710.99820.41040.5320.9420.9360.9360.1960.1910.190
      53221563569.44015.23331.8730.6510.6490.6490.2700.2660.265
      6179256552.7235.73611.0401.1271.1221.1210.3860.3770.376
      729013995114.52026.32853.4600.9700.9680.9670.1700.1690.168
      892846436.36611.69922.4450.3870.3850.3850.1210.1190.119
      9131283713.8127.25414.7930.8070.8020.8020.1750.1700.169
      10368744238.37015.87134.3501.0321.0231.0220.2090.2020.200
    • Table 3. Experimental results of different methods on the Lund public dataset (σ=5 pixel)

      View table

      Table 3. Experimental results of different methods on the Lund public dataset (σ=5 pixel)

      IDTime /sMean 2D reprojection error /pixel
      MidpointOursL2RepMidpointOursL2Rep
      120.50844.27590.5562.1362.1052.103
      223.82946.67396.9192.9642.9342.930
      334.91363.022139.8732.6632.6272.624
      411.38020.58546.9091.6771.6641.662
      59.69117.31638.9843.0503.0463.044
      62.7245.83811.8092.3562.3502.351
      713.90327.21358.1752.2572.2412.236
      86.28912.39726.1472.8292.8132.811
      93.8596.82715.9001.9171.8711.870
      107.78615.55034.1842.1392.1092.105
    Tools

    Get Citation

    Copy Citation Text

    Fang Wei, Yang Kui. Inverse Depth Adaptive Weighting Based Multi-View Triangulation Method[J]. Chinese Journal of Lasers, 2020, 47(12): 1204007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Measurement and metrology

    Received: Jun. 18, 2020

    Accepted: --

    Published Online: Nov. 17, 2020

    The Author Email: Wei Fang (fangwei@bupt.edu.cn)

    DOI:10.3788/CJL202047.1204007

    Topics