Chinese Journal of Lasers, Volume. 49, Issue 14, 1402804(2022)

State of the Art of Selective Laser Melted 316L Stainless Steel: Process, Microstructure, and Mechanical Properties

Huazhen Jiang1, Jiahuiyu Fang1,2, Qisheng Chen1,2、*, Shaoke Yao1,2, Huilei Sun3, Jingyu Hou1,2, Qiyun Hu1,2, and Zhengyang Li1,2、**
Author Affiliations
  • 1Wide Field Flight Engineering Science and Application Center, Institute of Mechanics, Chinese Academy of Science, Beijing 100190, China
  • 2School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Mechanical Engineering, Hebei University of Science & Technology, Shijiazhuang 050018, Hebei, China
  • show less
    Figures & Tables(18)
    Summary of defect types during selective laser melting process (the inset figures are collected from references[4,17,28])
    Effects of several energy density indicators on relative density of selective laser melted materials (experimental data in the figures are collected from references [45,48-57] and the thermo-physical parameters used to calculate energy density indicators are collected from references [58-60])
    Effects of several dimensionless numbers on relative density of selective laser melted materials (experimental data in the figures are collected from references [45,48-51,56-58] and the thermo-physical parameters used to calculate the dimensionless numbers are collected from references [58-60])
    Microstructures of selective laser melted 316L sample[19], where nano-inclusions are indicated by the blue arrows. (a) Melt pool; (b) cell structure; (c) nano-inclusions
    Melt pool shape at various energy densities. (a)(b) Melt pool morphologies at different area energy densities[25];(c)(d) melt pool morphologies at volume energy density of 81 J/mm3 and 150 J/mm3, respectively[73]
    Single tracks morphologies at different volume energy densities[74]. (a) Top views; (b) cross-sectional views
    Melt pool morphologies at various process parameters(dark blue arrows indicate keyhole defects, while the green ones represent irregular defects)[26]
    Texture control by modulation of melt pool morphologies. (a)-(f) Melt pools and textures under different laser beams and laser powers[14]; (g)-(k) melt pools and textures observed in the specimens fabricated with low and high energy densities[82]
    Effect of process parameters on cellular structure and tensile property of an selective laser melted 316L stainless steel[26].(a) Effect of process parameters on cellular structure size; (b) engineering stress-strain curves at low energy density
    Typical morphology of indent with the load of 0.98 N and of 9.8 N, respectively[28]
    A summary of academic viewpoints on high strength and high ductility mechanisms of selective laser melted 316L stainless steel[14,19,21,24,88]
    Microstructures of 316L fabricated by selective laser melting. As-built part: (a) melt pool morphology; (b) cellular structure. As-fractured samples: (c) melt pool morphology; (d) optical microscopy (OM) image showing the debonding of melt pool; (e) a high magnified scanning electron microscopy (SEM) image showing the seriously elongated cellular structure after tensile test; (f) SEM image showing the fractured location occurs at both cellularstructure and cellular dendrite structure
    Grain maps of selective laser melted 316L stainless steel at different strain levels. (a) As-built; (b) 15%;(c) 30%; (d) 46%
    Melt pool, crystalline grain, and cellular structure of selective laser melted 316L stainless steel evolution as a function of annealing temperature[83]
    Variation of yield strength of selective laser melted 316L with annealing temperature[83], and the data in the figure are from the literatures[18,84-85,87,90,92,117,123,133], where the blue dashed lines indicate the general variation trend
    Applications of selective laser melted 316L stainless steel[135-140]
    • Table 1. Grain size of selective laser melted 316L samples in different references

      View table

      Table 1. Grain size of selective laser melted 316L samples in different references

      Author and referencePower /WScanning speed /(mm·s-1)Aspect ratioGrain width /μmGrain length /μm
      Shamsujjoha, et al.[89]400---200
      Montero-Sistiaga, et al.[35]400-1.470100
      Montero-Sistiaga, et al.[35]1000-10~100~1000
      Sun, et al.[14]380--13.2-
      Sun, et al.[14]950--11.6-
      Ma, et al.[25]200-2000800-22005-1516-27120-400
      Wang, et al.(concept)[24]150-350700-1700-45-
      Wang, et al.(Fraunhofer)[24]296-353150-225-20-
      Voisin, et al.[90]150700-9-
      Salman, et al.[91]175688-45-
      Chen, et al.[84]200850-5.9-
      Sistiaga, et al.[92]----100
      Saeidi, et al.[15]195800--10-100
      Jiang, et al.[83]2069001.641.267.9
      Khodabakhshi, et al.[93]---7.5-
    • Table 2. A summary of tensile properties of 316L samples produced via different selective laser melting parameters and processing technologies ( represents the data obtained by estimating from engineering stress-strain curves)

      View table

      Table 2. A summary of tensile properties of 316L samples produced via different selective laser melting parameters and processing technologies ( represents the data obtained by estimating from engineering stress-strain curves)

      Author and referenceσy /MPaσUTS /MPaεUE /%εf /%
      Jiang, et al.[26]584±16773±428±146±1
      Shamsujjoha, et al.[89]5846672349
      Bahl, et al.[105]550675 44
      Wang, et al.(concept)[24]595-68070034±358
      Wang, et al.(Fraunhofer)[24]450-5576405987
      Qiu, et al.[23]558686 51
      Qiu, et al.[23]541681 51
      Qiu, et al.[23]519663 47
      Casati, et al.[69]554685 36
      Zhong, et al.[19]487594 49
      Saeidi, et al.[21]428654 45
      Saeidi, et al.[21]456703 46
      Liu, et al.[88]552  83
      Sun, et al.[14]567660 40
      Wang, et al.[34] 59021 
      Elangeswaran, et al.[123]453573 46
      Riemer, et al.[124]462565 54
      Suryawanshi, et al.[125]512622 20
      Suryawanshi, et al.[125]430509 12
      Suryawanshi, et al.[125]536668 25
      Suryawanshi, et al.[125]449528 12
      Kurzynowski, et al.[73]517687 32
      Kurzynowski, et al.[73]463687 25
      Kurzynowski, et al.[73]454750 29
      Kurzynowski, et al.[73]440662 28
      Kurzynowski, et al.[73]409674 26
      ASMIH Handbook Committee (hot finished+annealed)[110]170480 40
      ASMIH Handbook Committee (cold finished+annealed)[110]170480 30
      ASMIH Handbook Committee (cold finished)[110]310620 30
      Segura, et al. (wrought 316L)[126]327±10620±4.5 53±0.8
    Tools

    Get Citation

    Copy Citation Text

    Huazhen Jiang, Jiahuiyu Fang, Qisheng Chen, Shaoke Yao, Huilei Sun, Jingyu Hou, Qiyun Hu, Zhengyang Li. State of the Art of Selective Laser Melted 316L Stainless Steel: Process, Microstructure, and Mechanical Properties[J]. Chinese Journal of Lasers, 2022, 49(14): 1402804

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 13, 2021

    Accepted: Feb. 11, 2022

    Published Online: Jun. 14, 2022

    The Author Email: Chen Qisheng (qschen@imech.ac.cn), Li Zhengyang (zyli@imech.ac.cn)

    DOI:10.3788/CJL202249.1402804

    Topics