Journal of Electronic Science and Technology, Volume. 23, Issue 1, 100300(2025)
Grape Guard: A YOLO-based mobile application for detecting grape leaf diseases
[1] [1] S. B. Mamun, M. T. Ahad, M. M. Mshed, N. Hossain, Y. R. Emon, Scratch vision transfmer model f diagnosis grape leaf disease, in: Proc. of Intl. Conf. on Trends in Computational Cognitive Engineering, Singape, Singape, 2023, pp. 101–118.
[2] Petrellis N.. Plant disease diagnosis for smart phone applications with extensible set of diseases. Applied Sciences, 1952, 1-22(2019).
[3] Lu X.-Y., Yang R., Zhou J. et al. A hybrid model of ghost-convolution enlightened transformer for effective diagnosis of grape leaf disease and pest. J. King Saud Univ. Com., 34, 1755-1767(2022).
[6] Praveen S.P., Nakka R., Chokka A., Thatha V.N., Vellela S.S., Sirisha U.. A novel classification approach for grape leaf disease detection based on different attention deep learning techniques. Int. J. Adv. Comput. Sc., 14, 1199-1209(2023).
[12] [12] H. Lu, X. Zhang, J. Sun, S.H. Wan, CMAYOLO: a wine grape detection model based on YOLOv5x combining mixed attention mechanism, [online]. Available, http:doi:10.21203rs.3.rs3754270v1, December 2023.
[20] [20] Y. Liu, Q. Yu, S.Z. Geng, Realtime lightweight detection of grape diseases based on Fusion Transfmer YOLO, Frontiers in Plant Science 15 (2024) 1269423.
[21] [21] Grape leaf diseases dataset [Online]. Available, https:universe.roboflow.comtruprojectscqcqlgrapeleafdiseasedataset, 2023.
[22] Liu Y.-X., Su J.-Y., Shen L. et al. Development of a mobile application for identification of grapevine (Vitis vinifera L.) cultivars via deep learning. Int. J. Agr. Biol. Eng., 14, 172-179(2021).
[23] [23] K. Kirti, N. Rajpal, J. Yadav, Black measles disease identification in grape plant (Vitis vinifera) using deep learning, in: Proc. of Intl. Conf. on Computing, Communication, Intelligent Systems (ICCCIS), Greater Noida, India, 2021, pp. 97–101.
[24] [24] O.J. Alajas, R. Concepcion, E. Dadios, E. Sybingco, C.H. Mendigia, H. Aquino, Prediction of grape leaf black rot damaged surface percentage using hybrid linear discriminant analysis decision tree, in: Proc. of Intl. Conf. on Intelligent Technologies (CONIT), Hubli, India, 2021, pp. 1–6.
[25] Roznik D., Hoffmann S., Kozma P.. Screening a large set of grape accessions for resistance against black rot (Guignardia bidwellii/(Ell.)). Mitt. Klosterneuburg, 67, 149-157(2017).
[27] [27] Y. Yin, H. Li, W. Fu, FasterYOLO: an accurate faster object detection method, Digital Signal Processing, 102 (2020) 102756.
[28] Kim J.H., Kim N., Park Y.W., Won C.S.. Object detection and classification based on YOLO-V5 with improved maritime dataset. J. Mar. Sci. Eng., 377, 1-14(2022).
[30] Xiao B.-J., Nguyen M., Yan W.-Q.. Fruit ripeness identification using YOLOv8 model. Multimed. Tools Appl., 83, 28039-28056(2024).
[31] Wang G., Chen Y.-F., An P., Hong H.-Y., Hu J.-H., Huang T.-G.. UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios. Sensors, 23, 7190(2023).
[32] [32] T. Van Tran, Q.H. Do Ba, K.T. Tran, et al., Designing a mobile application f identifying strawberry diseases with YOLOv8 model integration. Int. J. of Advanced Comput. Sci. & A. 15 (3) (2024) 500–506.
[33] [33] M.J. Karim, M.O.F Goni, M. Nahiduzzaman, et al., Enhancing agriculture through realtime grape leaf disease classification via an edge device with a lightweight CNN architecture GradCAM, Sci Rep, 14 (1) (2024) 16022.
[34] [34] U. C. Akuthota, Abhishek, L. Bhargava, Plant disease detection on edge devices. in: Proc. of Intl. Conf. onData Science Applications, Jaipur, India, 2023, pp. 337–349.
[35] [35] D.L. Presti, J. Di Tocco, C. Massaroni, et al., Current understing, challenges perspective on ptable systems applied to plant moniting precision agriculture, Biosens. Bioelectron. 222 (5) (2022) 115005.
[36] [36] J.M. Barcelodinas, J.P. Cha, K.M. Hou, J. GarcíaVidal, A survey of wireless sens technologies applied to precision agriculture. In: Proc. of Intl. Conf. on Precision agriculture’13, Wageningen, herls, 2013, pp. 801–808.
[37] [37] N. Kaur, V. Devendran, A novel framewk f semiautomated system f grape leaf disease detection, Multimedia Tool. Appl. 83 (17) (2023) 50733–50755.
[38] [38] P. Kaushik, Machine learning algithms aided disease diagnosis prediction of Grape Leaf, in: Proc. of Intl. Conf. on Machine Learning, IoT Big Data, Singape, 2023, pp. 11–21.
Get Citation
Copy Citation Text
Sajib Bin Mamun, Israt Jahan Payel, Md. Taimur Ahad, Anthony S. Atkins, Bo Song, Yan Li. Grape Guard: A YOLO-based mobile application for detecting grape leaf diseases[J]. Journal of Electronic Science and Technology, 2025, 23(1): 100300
Category:
Received: Apr. 1, 2024
Accepted: Jan. 5, 2025
Published Online: Apr. 7, 2025
The Author Email: Md. Taimur Ahad (MdTaimur.Ahad@unisq.edu.au)