Journal of Electronic Science and Technology, Volume. 23, Issue 1, 100300(2025)

Grape Guard: A YOLO-based mobile application for detecting grape leaf diseases

Sajib Bin Mamun1, Israt Jahan Payel1, Md. Taimur Ahad1,2、*, Anthony S. Atkins3, Bo Song4, and Yan Li5
Author Affiliations
  • 1Department of Computer Science and Engineering, Daffodil International University, Dhaka, 1207, Bangladesh
  • 2Department of Computer Science, University of Southern Queensland, Toowoomba, 4350, Australia
  • 3Faculty of Digital, Technology, Innovation, and Business, Staffordshire University, Stoke-on-Trent, ST4 2DE, United Kingdom
  • 4School of Engineering, University of Southern Queensland, Toowoomba, 4350, Australia
  • 5School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, 4350, Australia
  • show less
    References(38)

    [1] [1] S. B. Mamun, M. T. Ahad, M. M. Mshed, N. Hossain, Y. R. Emon, Scratch vision transfmer model f diagnosis grape leaf disease, in: Proc. of Intl. Conf. on Trends in Computational Cognitive Engineering, Singape, Singape, 2023, pp. 101–118.

    [2] Petrellis N.. Plant disease diagnosis for smart phone applications with extensible set of diseases. Applied Sciences, 1952, 1-22(2019).

    [3] Lu X.-Y., Yang R., Zhou J. et al. A hybrid model of ghost-convolution enlightened transformer for effective diagnosis of grape leaf disease and pest. J. King Saud Univ. Com., 34, 1755-1767(2022).

    [6] Praveen S.P., Nakka R., Chokka A., Thatha V.N., Vellela S.S., Sirisha U.. A novel classification approach for grape leaf disease detection based on different attention deep learning techniques. Int. J. Adv. Comput. Sc., 14, 1199-1209(2023).

    [12] [12] H. Lu, X. Zhang, J. Sun, S.H. Wan, CMAYOLO: a wine grape detection model based on YOLOv5x combining mixed attention mechanism, [online]. Available, http:doi:10.21203rs.3.rs3754270v1, December 2023.

    [20] [20] Y. Liu, Q. Yu, S.Z. Geng, Realtime lightweight detection of grape diseases based on Fusion Transfmer YOLO, Frontiers in Plant Science 15 (2024) 1269423.

    [21] [21] Grape leaf diseases dataset [Online]. Available, https:universe.roboflow.comtruprojectscqcqlgrapeleafdiseasedataset, 2023.

    [22] Liu Y.-X., Su J.-Y., Shen L. et al. Development of a mobile application for identification of grapevine (Vitis vinifera L.) cultivars via deep learning. Int. J. Agr. Biol. Eng., 14, 172-179(2021).

    [23] [23] K. Kirti, N. Rajpal, J. Yadav, Black measles disease identification in grape plant (Vitis vinifera) using deep learning, in: Proc. of Intl. Conf. on Computing, Communication, Intelligent Systems (ICCCIS), Greater Noida, India, 2021, pp. 97–101.

    [24] [24] O.J. Alajas, R. Concepcion, E. Dadios, E. Sybingco, C.H. Mendigia, H. Aquino, Prediction of grape leaf black rot damaged surface percentage using hybrid linear discriminant analysis decision tree, in: Proc. of Intl. Conf. on Intelligent Technologies (CONIT), Hubli, India, 2021, pp. 1–6.

    [25] Roznik D., Hoffmann S., Kozma P.. Screening a large set of grape accessions for resistance against black rot (Guignardia bidwellii/(Ell.)). Mitt. Klosterneuburg, 67, 149-157(2017).

    [27] [27] Y. Yin, H. Li, W. Fu, FasterYOLO: an accurate faster object detection method, Digital Signal Processing, 102 (2020) 102756.

    [28] Kim J.H., Kim N., Park Y.W., Won C.S.. Object detection and classification based on YOLO-V5 with improved maritime dataset. J. Mar. Sci. Eng., 377, 1-14(2022).

    [30] Xiao B.-J., Nguyen M., Yan W.-Q.. Fruit ripeness identification using YOLOv8 model. Multimed. Tools Appl., 83, 28039-28056(2024).

    [31] Wang G., Chen Y.-F., An P., Hong H.-Y., Hu J.-H., Huang T.-G.. UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios. Sensors, 23, 7190(2023).

    [32] [32] T. Van Tran, Q.H. Do Ba, K.T. Tran, et al., Designing a mobile application f identifying strawberry diseases with YOLOv8 model integration. Int. J. of Advanced Comput. Sci. & A. 15 (3) (2024) 500–506.

    [33] [33] M.J. Karim, M.O.F Goni, M. Nahiduzzaman, et al., Enhancing agriculture through realtime grape leaf disease classification via an edge device with a lightweight CNN architecture GradCAM, Sci Rep, 14 (1) (2024) 16022.

    [34] [34] U. C. Akuthota, Abhishek, L. Bhargava, Plant disease detection on edge devices. in: Proc. of Intl. Conf. onData Science Applications, Jaipur, India, 2023, pp. 337–349.

    [35] [35] D.L. Presti, J. Di Tocco, C. Massaroni, et al., Current understing, challenges perspective on ptable systems applied to plant moniting precision agriculture, Biosens. Bioelectron. 222 (5) (2022) 115005.

    [36] [36] J.M. Barcelodinas, J.P. Cha, K.M. Hou, J. GarcíaVidal, A survey of wireless sens technologies applied to precision agriculture. In: Proc. of Intl. Conf. on Precision agriculture’13, Wageningen, herls, 2013, pp. 801–808.

    [37] [37] N. Kaur, V. Devendran, A novel framewk f semiautomated system f grape leaf disease detection, Multimedia Tool. Appl. 83 (17) (2023) 50733–50755.

    [38] [38] P. Kaushik, Machine learning algithms aided disease diagnosis prediction of Grape Leaf, in: Proc. of Intl. Conf. on Machine Learning, IoT Big Data, Singape, 2023, pp. 11–21.

    Tools

    Get Citation

    Copy Citation Text

    Sajib Bin Mamun, Israt Jahan Payel, Md. Taimur Ahad, Anthony S. Atkins, Bo Song, Yan Li. Grape Guard: A YOLO-based mobile application for detecting grape leaf diseases[J]. Journal of Electronic Science and Technology, 2025, 23(1): 100300

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 1, 2024

    Accepted: Jan. 5, 2025

    Published Online: Apr. 7, 2025

    The Author Email: Md. Taimur Ahad (MdTaimur.Ahad@unisq.edu.au)

    DOI:10.1016/j.jnlest.2025.100300

    Topics