Chinese Journal of Lasers, Volume. 49, Issue 7, 0701003(2022)

Generation of Laser System Using for Rydberg Atom Excitation

Gang Jin1、*, Yongjie Cheng1, Chengzu Huang1, Xingxun Liu1, Wanquan Qi1, and Jun He2,3
Author Affiliations
  • 1Beijing Institute of Radio Metrology and Measurement, Beijing 100039, China
  • 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, Shanxi 030006, China
  • 3Collaborative Innovation Center of Extreme Optics of the Ministry of Education and Shanxi Province, Shanxi University, Taiyuan, Shanxi 030006, China
  • show less
    References(35)

    [1] Kanda M. Standard antennas for electromagnetic interference measurements and methods to calibrate them[J]. IEEE Transactions on Electromagnetic Compatibility, 36, 261-273(1994).

    [2] Song Z F, Feng Z G, Liu X M et al. Quantum-based determination of antenna finite range gain by using Rydberg atoms[J]. IEEE Antennas and Wireless Propagation Letters, 16, 1589-1592(2017).

    [3] Hall J L. Nobel Lecture: defining and measuring optical frequencies[J]. Reviews of Modern Physics, 78, 1279-1295(2006).

    [4] Savukov I M, Seltzer S J, Romalis M V et al. Tunable atomic magnetometer for detection of radio-frequency magnetic fields[J]. Physical Review Letters, 95, 063004(2005).

    [5] Balabas M V, Karaulanov T, Ledbetter M P et al. Polarized alkali-metal vapor with minute-long transverse spin-relaxation time[J]. Physical Review Letters, 105, 070801(2010).

    [6] Wasilewski W, Jensen K, Krauter H et al. Quantum noise limited and entanglement-assisted magnetometry[J]. Physical Review Letters, 104, 133601(2010).

    [7] Koschorreck M, Napolitano M, Dubost B et al. Sub-projection-noise sensitivity in broadband atomic magnetometry[J]. Physical Review Letters, 104, 093602(2010).

    [8] Hao L P, Xue Y M, Fan J B et al. Precise measurement of a weak radio frequency electric field using a resonant atomic probe[J]. Chinese Physics B, 29, 033201(2020).

    [9] Mack M, Karlewski F, Hattermann H et al. Measurement of absolute transition frequencies of 87Rb to nS and nD Rydberg states by means of electromagnetically induced transparency[J]. Physical Review A, 83, 052515(2011).

    [10] Beterov I I, Ryabtsev I I, Tretyakov D B et al. Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP, and nD alkali-metal atoms with n≤80[J]. Physical Review A, 80, 059902(2009).

    [11] Sedlacek J A, Schwettmann A, Kübler H et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 8, 819-824(2012).

    [12] Kumar S, Fan H Q, Kübler H et al. Atom-based sensing of weak radio frequency electric fields using homodyne readout[J]. Scientific Reports, 7, 42981(2017).

    [13] Jing M Y, Hu Y, Ma J et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 16, 911-915(2020).

    [14] Kumar S, Fan H, Kübler H et al. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells[J]. Optics Express, 25, 8625-8637(2017).

    [15] Holloway C L, Gordon J A, Schwarzkopf A et al. Sub-wavelength imaging and field mapping via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied Physics Letters, 104, 244102(2014).

    [16] Simons M T, Gordon J A, Holloway C L et al. Using frequency detuning to improve the sensitivity of electric field measurements via electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms[J]. Applied Physics Letters, 108, 174101(2016).

    [17] Anderson D A, Paradis E, Raithel G et al. High-resolution antenna near-field imaging and sub-THz measurements with a small atomic vapor-cell sensing element[C], 1-3(2018).

    [18] Anderson D A, Miller S A, Raithel G et al. Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell[J]. Physical Review Applied, 5, 034003(2016).

    [19] Anderson D A, Schwarzkopf A, Miller S A et al. Two-photon microwave transitions and strong-field effects in a room-temperature Rydberg-atom gas[J]. Physical Review A, 90, 043419(2014).

    [20] Wang J M, Bai J D, Wang J Y et al. Realization of a watt-level 319-nm single-frequency CW ultraviolet laser and its application in single-photon Rydberg excitation of cesium atoms[J]. Chinese Optics, 12, 701-718(2019).

    [21] Hao L P, Xue Y M, Fan J B et al. Precise measurement of a weak radio frequency electric field using a resonant atomic probe[J]. Chinese Physics B, 29, 033201(2020).

    [22] Fan J B, He Y H, Jiao Y C et al. Nonlinear spectroscopy of three-photon excitation of cesium Rydberg atoms in vapor cell[J]. Chinese Physics B, 30, 034207(2021).

    [23] Avramescu A, Lermer T, Müller J et al. True green laser diodes at 524 nm with 50 mW continuous wave output power on c-plane GaN[J]. Applied Physics Express, 3, 061003(2010).

    [24] Chen Y H, Lin W C, Shy J T et al. Iodine-stabilized single-frequency green InGaN diode laser[J]. Optics Letters, 43, 126-129(2017).

    [25] Cheng Y J, Jin G, Liu X X et al. Realization of laser system for precision measurement of microwave electric field using Rydberg atoms[J]. Journal of Astronautic Metrology and Measurement, 41, 48-52(2021).

    [26] Thompson D J, Scholten R E. Narrow linewidth tunable external cavity diode laser using wide bandwidth filter[J]. Review of Scientific Instruments, 83, 023107(2012).

    [27] Ruan J, Liu J, Ma J et al. Robust external cavity diode laser system with high frequency stability for Cs atomic clock[J]. Chinese Optics Letters, 8, 300-302(2010).

    [28] Jiang Z J, Zhou Q, Tao Z M et al. Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter[J]. Chinese Physics B, 25, 083201(2016).

    [29] Zhang K, Bai J D, He J et al. Influence of laser linewidth on the conversion efficiency of single-pass frequency doubling with a PPMgO∶LN crystal[J]. Acta Physica Sinica, 65, 074207(2016).

    [30] Qian J P, Zhang L, Jiang H W et al. 2 W single-frequency, low-noise 509 nm laser via single-pass frequency doubling of an ECDL-seeded Yb fiber amplifier[J]. Applied Optics, 57, 8733-8737(2018).

    [31] Su M Q, You Y, Quan Z et al. 610-W continuous-wave single-mode green laser output based on highly efficient single-pass frequency doubling[J]. Chinese Journal of Lasers, 48, 1315002(2021).

    [32] Li G, Li S K, Wang X C et al. High efficient generation of over 1 watt 509 nm laser beam by a ring cavity frequency doubler with periodically poled KTiOPO4[J]. Applied Optics, 56, 55-60(2016).

    [33] Peng X L, Yang C S, Deng H Q et al. Research progress of blue-green single-frequency laser[J]. Laser & Optoelectronics Progress, 57, 071606(2020).

    [34] Wei L J, Cao J, Zhang Q M et al. Frequency doubling of fiber laser based on narrow linewidth grating[J]. Laser & Optoelectronics Progress, 58, 1914010(2021).

    [35] Liu H F, Wang J, Yang B D et al. Improvement of signal-to-noise ratio of electromagnetically-induced transparency spectra in the ladder-type cesium 6S1/2-6P1/2-8S1/2 atomic system[J]. Acta Optica Sinica, 33, 1030003(2013).

    Tools

    Get Citation

    Copy Citation Text

    Gang Jin, Yongjie Cheng, Chengzu Huang, Xingxun Liu, Wanquan Qi, Jun He. Generation of Laser System Using for Rydberg Atom Excitation[J]. Chinese Journal of Lasers, 2022, 49(7): 0701003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Jul. 28, 2021

    Accepted: Sep. 16, 2021

    Published Online: Mar. 25, 2022

    The Author Email: Gang Jin (jingang142907@163.com)

    DOI:10.3788/CJL202249.0701003

    Topics