The Journal of Light Scattering, Volume. 35, Issue 3, 189(2023)
Principle of Tip-Enhanced Raman Spectroscopy and Advances in Scientific Research and Teaching Education
[1] [1] Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501-502.
[3] [3] Cao Y, Sun M. Tip-enhanced Raman spectroscopy[J]. Reviews in Physics, 2022: 100067.
[4] [4] Xu H, Bjerneld E J, Kll M, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering[J]. Physical review letters, 1999, 83(21): 4357.
[5] [5] Liu H, Yang Z, Meng L, et al. Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix[J]. Journal of the American Chemical Society, 2014, 136(14): 5332-5341.
[6] [6] Yang J, Qi H, Li A, et al. Potential-driven restructuring of Cu single atoms to nanoparticles for boosting the electrochemical reduction of nitrate to ammonia[J]. Journal of the American Chemical Society, 2022, 144(27): 12062-12071.
[7] [7] Cao Y, Cheng Y, Sun M. Graphene-based SERS for sensor and catalysis[J]. Applied Spectroscopy Reviews, 2023, 58(1): 1-38.
[8] [8] Liu X, Liang Z, Du S, et al. Two compatible acceptors as an alloy model with a halogen-free solvent for efficient ternary polymer solar cells[J]. ACS Applied Materials & Interfaces, 2022, 14(7): 9386-9397.
[9] [9] Burns K H, Elles C G. Ultrafast dynamics of a molecular switch from resonance Raman spectroscopy: Comparing visible and UV excitation[J]. The Journal of Physical Chemistry A, 2022, 126(35): 5932-5939.
[10] [10] Malard L M, Lafeta L, Cunha R S, et al. Studying 2D materials with advanced Raman spectroscopy: CARS, SRS and TERS[J]. Physical Chemistry Chemical Physics, 2021, 23(41): 23428-23444.
[11] [11] Yang B, Chen G, Ghafoor A, et al. Sub-nanometre resolution in single-molecule photoluminescence imaging[J]. Nature Photonics, 2020, 14(11): 693-699.
[12] [12] Kurouski D, Dazzi A, Zenobi R, et al. Infrared and Raman chemical imaging and spectroscopy at the nanoscale[J]. Chemical Society Reviews, 2020, 49(11): 3315-3347.
[13] [13] Wang D, He P, Wang Z, et al. Advances in single cell Raman spectroscopy technologies for biological and environmental applications[J]. Current opinion in biotechnology, 2020, 64: 218-229.
[14] [14] Bhattarai A, Novikova I V, El-Khoury P Z. Tip-enhanced Raman nanographs of plasmonic silver nanoparticles[J]. The Journal of Physical Chemistry C, 2019, 123(45): 27765-27769.
[15] [15] Wang W, Shao F, Krger M, et al. Structure elucidation of 2D polymer monolayers based on crystallization estimates derived from tip-enhanced Raman spectroscopy (TERS) polymerization conversion data[J]. Journal of the American Chemical Society, 2019, 141(25): 9867-9871.
[16] [16] Kang D, Li R, Cao S, et al. Nonlinear optical microscopies: Physical principle and applications[J]. Applied Spectroscopy Reviews, 2021, 56(1): 52-66.
[17] [17] Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical physics letters, 1974, 26(2): 163-166.
[18] [18] Jeanmaire D L, Van Duyne R P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of electroanalytical chemistry and interfacial electrochemistry, 1977, 84(1): 1-20.
[19] [19] Albrecht M G, Creighton J A. Anomalously intense Raman spectra of pyridine at a silver electrode[J]. Journal of the american chemical society, 1977, 99(15): 5215-5217.
[20] [20] Xi X, Liang C. Perspective of future SERS clinical application based on current status of Raman spectroscopy clinical trials[J]. Frontiers in Chemistry, 2021, 9: 665841.
[21] [21] Guo J, Zeng F, Guo J, et al. Preparation and application of microfluidic SERS substrate: Challenges and future perspectives[J]. Journal of Materials Science & Technology, 2020, 37: 96-103.
[22] [22] Xie L, Lu J, Liu T, et al. Key role of direct adsorption on SERS sensitivity: synergistic effect among target, aggregating agent, and surface with Au or Ag colloid as surface-enhanced Raman spectroscopy substrate[J]. The journal of physical chemistry letters, 2020, 11(3): 1022-1029.
[23] [23] Burnham N A, Colton R J. Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1989, 7(4): 2906-2913.
[24] [24] Binnig G, Quate C F, Gerber C. Atomic force microscope[J]. Physical review letters, 1986, 56(9): 930.
[25] [25] Leamy H J. Charge collection scanning electron microscopy[J]. Journal of Applied Physics, 1982, 53(6): R51-R80.
[26] [26] Pagès‐Camagna S, Colinart S, Coupry C. Fabrication processes of archaeological Egyptian blue and green pigments enlightened by Raman microscopy and scanning electron microscopy[J]. Journal of Raman Spectroscopy, 1999, 30(4): 313-317.
[27] [27] Hook M S, Hartley P G, Thistlethwaite P J. Fabrication and characterization of spherical zirconia particles for direct force measurement using the atomic force microscope[J]. Langmuir, 1999, 15(19): 6220-6225.
[28] [28] Kneipp K, Kneipp H, Itzkan I, et al. Ultrasensitive chemical analysis by Raman spectroscopy[J]. Chemical reviews, 1999, 99(10): 2957-2976.
[29] [29] Zhang R, Zhang Y, Dong Z C, et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering[J]. Nature, 2013, 498(7452): 82-86.
[30] [30] Pienpinijtham P, Kitahama Y, Ozaki Y. Progress of tip-enhanced Raman scattering for the last two decades and its challenges in very recent years[J]. Nanoscale, 2022, 14(14): 5265-5288.
[31] [31] Meng Z, Tian Z, Yi J. Rapid theoretical method for inverse design on a tip-enhanced Raman spectroscopy (TERS) probe[J]. Optics Express, 2023, 31(10): 15474-15483.
[32] [32] Dong J, Gao W, Han Q, et al. Plasmon-enhanced upconversion photoluminescence: Mechanism and application[J]. Reviews in Physics, 2019, 4: 100026.
[33] [33] Hou W, Cronin S B. A review of surface plasmon resonance‐enhanced photocatalysis[J]. Advanced Functional Materials, 2013, 23(13): 1612-1619.
[34] [34] Yang Z, Aizpurua J, Xu H. Electromagnetic field enhancement in TERS configurations[J]. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2009, 40(10): 1343-1348.
[35] [35] Ossikovski R, Nguyen Q, Picardi G. Simple model for the polarization effects in tip-enhanced Raman spectroscopy[J]. Physical Review B, 2007, 75(4): 045412.
[36] [36] Etchegoin P G, Galloway C, Le Ru E C. Polarization-dependent effects in surface-enhanced Raman scattering (SERS)[J]. Physical chemistry chemical physics, 2006, 8(22): 2624-2628.
[37] [37] Noguez C. Surface plasmons on metal nanoparticles: the influence of shape and physical environment[J]. The Journal of Physical Chemistry C, 2007, 111(10): 3806-3819.
[38] [38] Anderson N, Hartschuh A, Novotny L. Near-field Raman microscopy[J]. Materials Today, 2005, 8(5): 50-54.
[39] [39] Jiang S, Zhang Y, Zhang R, et al. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering[J]. Nature nanotechnology, 2015, 10(10): 865-869.
[40] [40] vecová M, Volochanskyi O, Král M, et al. Advantages and drawbacks of the use of immobilized “green-synthesized” silver nanoparticles on gold nanolayer for near-field vibrational spectroscopic study of riboflavin[J]. Applied Surface Science, 2021, 557: 149832.
[41] [41] Kim D H, Lee C, Jeong B G, et al. Fabrication of highly uniform nanoprobe via the automated process for tip-enhanced Raman spectroscopy[J]. Nanophotonics, 2020, 9(9): 2989-2996.
[42] [42] Huang T X, Huang S C, Li M H, et al. Tip-enhanced Raman spectroscopy: tip-related issues[J]. Analytical and bioanalytical chemistry, 2015, 407: 8177-8195.
[43] [43] Wang H, Tian T, Zhang Y, et al. Sequential electrochemical oxidation and site-selective growth of nanoparticles onto AFM probes[J]. Langmuir, 2008, 24(16): 8918-8922.
[44] [44] Kato R, Taguchi K, Yadav R, et al. One-side metal-coated pyramidal cantilever tips for highly reproducible tip-enhanced Raman spectroscopy[J]. Nanotechnology, 2020, 31(33): 335207.
[45] [45] Walke P, Fujita Y, Peeters W, et al. Silver nanowires for highly reproducible cantilever based AFM-TERS microscopy: towards a universal TERS probe[J]. Nanoscale, 2018, 10(16): 7556-7565.
[46] [46] Wen H, Li J, Zhang Q, et al. Length-Controllable Gold-Coated Silver Nanowire Probes for High AFM-TERS Scattering Activity[J]. Nano Letters, 2022.
[47] [47] Taguchi A, Hayazawa N, Furusawa K, et al. Deep‐UV tip‐enhanced Raman scattering[J]. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2009, 40(9): 1324-1330.
[48] [48] Mahapatra S, Li L, Schultz J F, et al. Methods to fabricate and recycle plasmonic probes for ultrahigh vacuum scanning tunneling microscopy‐based tip‐enhanced Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2021, 52(2): 573-580.
[49] [49] Mrenovi'c D, Tang Z X, Pandey Y, et al. Regioselective Tip-Enhanced Raman Spectroscopy of Lipid Membranes with Sub-Nanometer Axial Resolution[J]. Nano Letters, 2023.
[50] [50] Mrenovi'c D, Ge W, Kumar N, et al. Nanoscale Chemical Imaging of Human Cell Membranes Using Tip‐Enhanced Raman Spectroscopy[J]. Angewandte Chemie, 2022, 134(43): e202210288.
[51] [51] Seweryn S, Skirlińska-Nosek K, Sofińska K, et al. Optimization of tip-enhanced Raman spectroscopy for probing the chemical structure of DNA[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 281: 121595.
[52] [52] Farhat P, Avilés M O, Legge S, et al. Tip-Enhanced Raman Spectroscopy and Tip-Enhanced Photoluminescence of MoS2 Flakes Decorated with Gold Nanoparticles[J]. The Journal of Physical Chemistry C, 2022, 126(16): 7086-7095.
[53] [53] Miranda H, Monken V, Campos J L E, et al. Establishing the excitation field in tip-enhanced Raman spectroscopy to study nanostructures within two-dimensional systems[J]. 2D Materials, 2022, 10(1): 015002.
[54] [54] Fang Y, Zhang Z, Sun M. High vacuum tip-enhanced Raman spectroscope based on a scanning tunneling microscope[J]. Review of Scientific Instruments, 2016, 87(3): 033104.
[55] [55] Meng L, Sun M, Chen J, et al. A nanoplasmonic strategy for precision in-situ measurements of tip-enhanced Raman and fluorescence spectroscopy[J]. Scientific reports, 2016, 6(1): 1-7.
[56] [56] Yano T, Verma P, Saito Y, et al. Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres[J]. Nature Photonics, 2009, 3(8): 473-477.
[57] [57] Zhang Y, Yang B, Ghafoor A, et al. Visually constructing the chemical structure of a single molecule by scanning Raman picoscopy[J]. National Science Review, 2019, 6(6): 1169-1175.
[58] [58] Dong X, Yang B, Zhu R, et al. Tip-induced bond weakening, tilting, and hopping of a single CO molecule on Cu (100)[J]. Light: Advanced Manufacturing, 2022, 3: 1-10.
[59] [59] Kato R, Moriyama T, Umakoshi T, et al. Ultrastable tip-enhanced hyperspectral optical nanoimaging for defect analysis of large-sized WS2 layers[J]. Science Advances, 2022, 8(28): eabo4021.
[60] [60] Ho C S, Jean N, Hogan C A, et al. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning[J]. Nature communications, 2019, 10(1): 4927.
[61] [61] Liu J, Osadchy M, Ashton L, et al. Deep convolutional neural networks for Raman spectrum recognition: a unified solution[J]. Analyst, 2017, 142(21): 4067-4074.
[62] [62] Gautam A, Raman B. Towards effective classification of brain hemorrhagic and ischemic stroke using CNN[J]. Biomedical Signal Processing and Control, 2021, 63: 102178.
[63] [63] Sohn W B, Lee S Y, Kim S. Single‐layer multiple‐kernel‐based convolutional neural network for biological Raman spectral analysis[J]. Journal of Raman Spectroscopy, 2020, 51(3): 414-421.
[64] [64] Kazemzadeh M, Hisey C L, Zargar-Shoshtari K, et al. Deep convolutional neural networks as a unified solution for Raman spectroscopy-based classification in biomedical applications[J]. Optics Communications, 2022, 510: 127977.()
Get Citation
Copy Citation Text
CAO Yi, ZHAO Hulin, SUN Mengtao. Principle of Tip-Enhanced Raman Spectroscopy and Advances in Scientific Research and Teaching Education[J]. The Journal of Light Scattering, 2023, 35(3): 189
Category:
Received: May. 25, 2023
Accepted: --
Published Online: Nov. 17, 2023
The Author Email: