Acta Laser Biology Sinica, Volume. 31, Issue 6, 488(2022)
Research Progress of CRISPR-Cas9 Gene Editing Technology in Cancer Therapy
[1] [1] YOUNG C S, PYLE A D, SPENCER M J. CRISPR for neuromuscular disorders: gene editing and beyond[J]. Physiology (Bethesda), 2019, 34(5): 341-353.
[2] [2] CHAKRABORTY C, TEOH S L, DAS S. The smart programmable CRISPR technology: a next generation genome editing tool for investigators[J]. Current Drug Targets, 2017, 18(14): 1653-1663.
[3] [3] PENG R, LIN G, LI J. Potential pitfalls of CRISPR/Cas9-mediated genome editing[J]. FEBS Journal, 2016, 283(7): 1218-1231.
[4] [4] ZHU S, ZHOU Y, WEI W. Genome-wide CRISPR/CAS9 screening for high-throughput functional genomics in human cells[J]. Methods in Molecular Biology, 2017, 1656: 175-181.
[5] [5] LIU J, ZHOU Y, QI X, et al. CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling[J]. Human Genetics, 2017, 136(1): 1-12.
[6] [6] GRATZ S J, RUBINSTEIN C D, HARRISON M M, et al. CRISPR-Cas9 genome editing in Drosophila[J]. Current Protocols in Molecular Biology, 2015, 111: 31.2.1-31.2.20.
[7] [7] BORTESI L, FISCHER R. The CRISPR/Cas9 system for plant genome editing and beyond[J]. Biotechnology Advances, 2015, 33(1): 41-52.
[8] [8] CYRANOSKI D. CRISPR gene-editing tested in a person for the first time[J]. Nature, 2016, 539(7630): 479.
[9] [9] LIU Y, ZOU R S, HE S, et al. Very fast CRISPR on demand[J]. Science, 2020, 368(6496): 1265-1269.
[10] [10] CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823.
[11] [11] BAYLIS F, MCLEOD M. First-in-human phase 1 CRISPR gene editing cancer trials: are we ready?[J]. Current Gene Therapy, 2017, 17(4): 309-319.
[12] [12] CYRANOSKI D. Chinese scientists to pioneer first human CRISPR trial[J]. Nature, 2016, 535(7613): 476-477.
[13] [13] TAKEUCHI N, WOLF Y I, MAKAROVA K S, et al. Nature and intensity of selection pressure on CRISPR-associated genes[J]. Journal of Bacteriology, 2012, 194(5): 1216-1225.
[14] [14] MAKAROVA K S, WOLF Y I, ALKHNBASHI O S, et al. An updated evolutionary classification of CRISPR-Cas systems[J]. Nature Reviews Microbiology, 2015, 13(11): 722-736.
[15] [15] WRIGHT A V, NU?EZ J K, DOUDNA J A. Biology and applications of CRISPR systems: Harnessing nature’s toolbox for genome engineering[J]. Cell, 2016, 164(1/2): 29-44.
[16] [16] MAKAROVA K S, WOLF Y I, ALKHNBASHI O S, et al. An updated evolutionary classification of CRISPR-Cas systems[J]. Nature Reviews Microbiology, 2015, 13(11): 722-736.
[17] [17] BARRANGOU R. CRISPR-Cas systems and RNA-guided interference[J]. Wiley Interdisciplinary Reviews: RNA, 2013, 4(3): 267-278.
[18] [18] PEREZ ROJO F, NYMAN R K M, JOHNSON A A T, et al. CRISPR-Cas systems: ushering in the new genome editing era[J]. Bioengineered, 2018, 9(1): 214-221.
[19] [19] JANIK E, NIEMCEWICZ M, CEREMUGA M, et al. Various aspects of a gene editing system-CRISPR-Cas9[J]. International Journal of Molecular Sciences, 2020, 21(24): 9604.
[20] [20] CHAUDHURI A, HALDER K, DATTA A. Classification of CRISPR/Cas system and its application in tomato breeding[J]. Theoretical and Applied Genetics, 2022, 135(2): 367-387.
[21] [21] ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771.
[22] [22] ABUDAYYEH O O, GOOTENBERG J S, ESSLETZBICHLER P, et al. RNA targeting with CRISPR-Cas13[J]. Nature, 2017, 550(7675): 280-284.
[23] [23] WANG S W, GAO C, ZHENG Y M, et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer[J]. Molecular Cancer, 2022, 21(1): 57.
[24] [24] BARRANGOU R, CO?Té-MONVOISIN A C, STAHL B, et al. Genomic impact of CRISPR immunization against bacteriophages[J]. Biochemical Society Transactions, 2013, 41(6): 1383-1391.
[25] [25] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
[26] [26] LINO C A, HARPER J C, CARNEY J P, et al. Delivering CRISPR: a review of the challenges and approaches[J]. Drug Delivery, 2018, 25(1): 1234-1257.
[27] [27] HUANG J, ZHOU Y T, LI J, et al. CRISPR/Cas systems: delivery and application in gene therapy[J]. Frontiers in Bioengineering and Biotechnology, 2022, 9: 42325.
[28] [28] YANG H, WU J J, TANG T, et al. CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus[J]. Scientific Reports, 2017, 7(1): 7489.
[29] [29] KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420-424.
[30] [30] HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262-1278.
[31] [31] OTTEN A B C, SUN B K. Research techniques made simple: CRISPR genetic screens[J]. Journal of Investigative Dermatology, 2020, 140(4): 723-728.e721.
[32] [32] KURATA J S, LIN R J. MicroRNA-focused CRISPR-Cas9 library screen reveals fitness-associated miRNAs[J]. RNA, 2018, 24(7): 966-981.
[33] [33] FORD K, MCDONALD D, MALI P. Functional genomics via CRISPR-Cas[J]. Journal of Molecular Biology, 2019, 431(1): 48-65.
[34] [34] YIN H, XUE W, ANDERSON D G. CRISPR-Cas: a tool for cancer research and therapeutics[J]. Nature Reviews Clinical Oncology, 2019, 16(5): 281-295.
[35] [35] ROUET P, SMIH F, JASIN M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease[J]. Molecular Cell Biology, 1994, 14(12): 8096-8106.
[36] [36] LIU J, SRINIVASAN S, LI C Y, et al. Pooled library screening with multiplexed Cpf1 library[J]. Nature Communications, 2019, 10(1): 3144.
[37] [37] DATLINGER P, RENDEIRO A F, SCHMIDL C, et al. Pooled CRISPR screening with single-cell transcriptome readout[J]. Nature Methods, 2017, 14(3): 297-301.
[38] [38] RUBIN A J, PARKER K R, SATPATHY A T, et al. Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks[J]. Cell, 2019, 176(1/2): 361-376.e17.
[39] [39] PIERCE S E, GRANJA J M, GREENLEAF W J. High-throughput single-cell chromatin accessibility CRISPR screens enable unbiased identification of regulatory networks in cancer[J]. Nature Communications, 2021, 12(1): 2969.
[40] [40] DAI M, YAN G, WANG N, et al. In vivo genome-wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/Hippo targeted combination therapy[J]. Nature Communications, 2021, 12(1): 3055.
[41] [41] CHENG C, PEI X, LI S W, et al. CRISPR/Cas9 library screening uncovered methylated PKP2 as a critical driver of lung cancer radioresistance by stabilizing β-catenin[J]. Oncogene, 2021, 40(16): 2842-2857.
[42] [42] SERRESI M, KERTALLI S, LI L, et al. Functional antagonism of chromatin modulators regulates epithelial-mesenchymal transition[J]. Science Advances, 2021, 7(9): eabd7974.
[43] [43] SZLACHTA K, KUSCU C, TUFAN T, et al. CRISPR knockout screening identifies combinatorial drug targets in pancreatic cancer and models cellular drug response[J]. Nature Communications, 2018, 9(1): 4275.
[44] [44] WANG C, WANG G, FENG X, et al. Genome-wide CRISPR screens reveal synthetic lethality of RNASEH2 deficiency and ATR inhibition[J]. Oncogene, 2019, 38(14): 2451-2463.
[45] [45] DEWEIRDT P C, SANSON K R, SANGREE A K, et al. Optimization of AsCas12a for combinatorial genetic screens in human cells[J]. Nature Biotechnology, 2021, 39(1): 94-104.
[46] [46] YAN J, KANG D D, TURNBULL G, et al. Delivery of CRISPR-Cas9 system for screening and editing RNA binding proteins in cancer[J]. Advanced Drug Delivery Reviews, 2022, 180: 114042.
[47] [47] WANG D, MOU H, LI S, et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses[J]. Human Gene Therapy, 2015, 26(7): 432-442.
[48] [48] MADDALO D, MANCHADO E, CONCEPCION C P, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system[J]. Nature, 2014, 516(7531): 423-427.
[49] [49] DONG J Y, FAN P D, FRIZZELL R A. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus[J]. Human Gene therapy, 1996, 7(17): 2101-2112.
[50] [50] SUN J Y, ANAND-JAWA V, CHATTERJEE S, et al. Immune responses to adeno-associated virus and its recombinant vectors[J]. Gene Therapy, 2003, 10(11): 964-976.
[51] [51] VAKULSKAS C A, BEHLKE M A. Evaluation and reduction of CRISPR off-target cleavage events[J]. Nucleic Acid Therapeutics, 2019, 29(4): 167-174.
[52] [52] WINTERS I P, CHIOU S H, PAULK N K, et al. Multiplexed in vivo homology-directed repair and tumor barcoding enables parallel quantification of Kras variant oncogenicity[J]. Nature Communications, 2017, 8(1): 2053.
[53] [53] PLATT R J, CHEN S, ZHOU Y, et al. CRISPR-Cas9 knock in mice for genome editing and cancer modeling[J]. Cell, 2014, 159(2): 440-455.
[54] [54] KANTOR B, BAILEY R M, WIMBERLY K, et al. Methods for gene transfer to the central nervous system[J]. Advances in Genetics, 2014, 87: 125-197.
[55] [55] LING S, YANG S, HU X, et al. Lentiviral delivery of co-packaged Cas9 mRNA and a Vegfa-targeting guide RNA prevents wet age-related macular degeneration in mice[J]. Nature Biomedical Engineering, 2021, 5(2): 144-156.
[56] [56] HIGH K A. Turning genes into medicines-what have we learned from gene therapy drug development in the past decade?[J]. Nature Communications, 2020, 11(1): 5821.
[57] [57] SERCOMBE L, VEERATI T, MOHEIMANI F, et al. Advances and challenges of liposome assisted drug delivery[J]. Frontiers in Pharmacology, 2015, 6: 286.
[58] [58] PARDI N, HOGAN M J, PELC R S, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination[J]. Nature, 2017, 543(7644): 248-251.
[59] [59] CHENG Q, WEI T, FARBIAK L, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing[J]. Nature Nanotechnology, 2020, 15(4): 313-320.
[60] [60] YAN M, DU J, GU Z, et al. A novel intracellular protein delivery platform based on single-protein nanocapsules[J]. Nature Nanotechnology, 2010, 5(1): 48-53.
[61] [61] CHEN G, ABDEEN A A, WANG Y, et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing[J]. Nature Nanotechnology, 2019, 14(10): 974-980.
[62] [62] GINDY M E, PRUD'HOMME R K. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy[J]. Expert Opinion on Drug Delivery, 2009, 6(8): 865-878.
[63] [63] AHMAD S, ZAMRY A A, TAN H T, et al. Targeting dendritic cells through gold nanoparticles: a review on the cellular uptake and subsequent immunological properties[J]. Molecular Immunology, 2017, 91: 123-133.
[64] [64] LEE J Y, PARK W, YI D K. Immunostimulatory effects of gold nanorod and silica-coated gold nanorod on RAW 264.7 mouse macrophages[J]. Toxicology Letters, 2012, 209(1): 51-57.
[65] [65] ZHANG B. CRISPR/Cas gene therapy[J]. Journal of Cellular Physiology, 2021, 236(4): 2459-2481.
[66] [66] NEELAPU S S, TUMMALA S, KEBRIAEI P, et al. Chimeric antigen receptor T-cell therapy―assessment and management of toxicities[J]. Nature Reviews Clinical Oncology, 2018, 15(1): 47-62.
[67] [67] PRASAD V. Immunotherapy: tisagenlecleucel―the first approved CAR-T-cell therapy: implications for payers and policy makers[J]. Nature Reviews Clinical Oncology, 2018, 15(1): 11-12.
[68] [68] K?HL U, ARSENIEVA S, HOLZINGER A, et al. CAR T cells in trials: recent achievements and challenges that remain in the production of modified T cells for clinical applications[J]. Human Gene therapy, 2018, 29(5): 559-568.
[69] [69] SADELAIN M, BRENTJENS R, RIVIèRE I. The basic principles of chimeric antigen receptor design[J]. Cancer Discovery, 2013, 3(4): 388-398.
[70] [70] CHOI B D, YU X, CASTANO A P, et al. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma[J]. Journal for Immunotherapy for Cancer, 2019, 7(1): 304.
[71] [71] EYQUEM J, MANSILLA-SOTO J, GIAVRIDIS T, et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection[J]. Nature, 2017, 543(7643): 113-117.
[72] [72] MORRIS E C, STAUSS H J. Optimizing T-cell receptor gene therapy for hematologic malignancies[J]. Blood, 2016, 127(26): 3305-3311.
[73] [73] BENDLE G M, LINNEMANN C, HOOIJKAAS A I, et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy[J]. Nature Medicine, 2010, 16(5): 565-570.
[74] [74] LEGUT M, DOLTON G, MIAN A A, et al. CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells[J]. Blood, 2018, 131(3): 311-322.
[75] [75] MORTON L T, REIJMERS R M, WOUTERS A K, et al. Simultaneous deletion of endogenous TCRαβ for TCR gene therapy creates an improved and safe cellular therapeutic[J]. Molecular Therapy, 2020, 28(1): 64-74.
[76] [76] STADTMAUER E A, FRAIETTA J A, DAVIS M M, et al. CRISPR-engineered T cells in patients with refractory cancer[J]. Science, 2020, 367(6481): eaba7365.
[78] [78] FU Y, FODEN J A, KHAYTER C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nature Biotechnology, 2013, 31(9): 822-826.
[79] [79] MARUYAMA T, DOUGAN S K, TRUTTMANN M C, et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining[J]. Nature Biotechnology, 2015, 33(5): 538-542.
[80] [80] TEBOUL L, HERAULT Y, WELLS S, et al. Variability in genome editing outcomes: challenges for research reproducibility and clinical safety[J]. Molecular Therapy, 2020, 28(6): 1422-1431.
[81] [81] CHENG H, ZHANG F, DING Y. CRISPR/Cas9 delivery system engineering for genome editing in therapeutic applications[J]. Pharmaceutics, 2021, 13(10): 1649.
Get Citation
Copy Citation Text
DING Yidan, CHEN Chen. Research Progress of CRISPR-Cas9 Gene Editing Technology in Cancer Therapy[J]. Acta Laser Biology Sinica, 2022, 31(6): 488
Received: Jul. 25, 2022
Accepted: --
Published Online: Mar. 6, 2023
The Author Email: CHEN Chen (cchen18@cmu.edu.cn)