Chinese Journal of Lasers, Volume. 47, Issue 10, 1013001(2020)
Enhancement of Spontaneous Emission and Surface Plasmon Polariton Propagation of Quantum Dots Fluorescence in a Coupling Structure of Gold Nanosphere and Sliver Nanowire
[2] Michler P, Imamoglu A, Mason M D et al. Quantum correlation among photons from a single quantum dot at room temperature[J]. Nature, 406, 968-970(2000).
[3] Gisin N, Ribordy G, Tittel W et al. Quantum cryptography[J]. Reviews of Modern Physics, 74, 145-195(2002).
[6] Li M, Cushing S K, Wu N Q. Plasmon-enhanced optical sensors: a review[J]. The Analyst, 140, 386-406(2015).
[8] Faraon A, Majumdar A, Englund D et al. Integrated quantum optical networks based on quantum dots and photonic crystals[J]. New Journal of Physics, 13, 055025(2011).
[9] Pacifici D, Lezec H J, Atwater H A. All-optical modulation by plasmonic excitation of CdSe quantum dots[J]. Nature Photonics, 1, 402-406(2007).
[11] Hoang T B, Akselrod G M, Argyropoulos C et al. Ultrafast spontaneous emission source using plasmonic nanoantennas[J]. Nature Communications, 6, 7788(2015).
[12] Ratchford D, Shafiei F, Kim S et al. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle[J]. Nano Letters, 11, 1049-1054(2011).
[13] Ji B, Giovanelli E, Habert B et al. Non-blinking quantum dot with a plasmonic nanoshell resonator[J]. Nature Nanotechnology, 10, 170-175(2015).
[14] Morozov S, Gaio M, Maier S A et al. Metal-dielectric parabolic antenna for directing single photons[J]. Nano Letters, 18, 3060-3065(2018).
[15] Chang D E, Sørensen A S, Demler E A et al. A single-photon transistor using nanoscale surface plasmons[J]. Nature Physics, 3, 807-812(2007).
[16] Falk A L. Koppens F H L, Yu C L, et al. Near-field electrical detection of optical plasmons and single-plasmon sources[J]. Nature Physics, 5, 475-479(2009).
[17] Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials[J]. Science, 317, 1698-1702(2007).
[18] Hoang T B, Akselrod G M, Mikkelsen M H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities[J]. Nano Letters, 16, 270-275(2016).
[19] Yuan C T, Yu P, Ko H C et al. Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots[J]. ACS Nano, 3, 3051-3056(2009).
[20] Kinkhabwala A, Yu Z, Fan S et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 3, 654-657(2009).
[21] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews, 104, 293-346(2004).
[22] Ghosh S K, Pal T. ChemInform abstract: interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications[J]. Chemical Reviews, 107, 4797-4862(2007).
[23] Pelton M. Modified spontaneous emission in nanophotonic structures[J]. Nature Photonics, 9, 427-435(2015).
[24] Noginov M A, Zhu G, Belgrave A M et al. Demonstration of a spaser-based nanolaser[J]. Nature, 460, 1110-1112(2009).
[26] Knight M W, Grady N K, Bardhan R et al. Nanoparticle-mediated coupling of light into a nanowire[J]. Nano Letters, 7, 2346-2350(2007).
[27] Hao F, Nordlander P. Plasmonic coupling between a metallic nanosphere and a thin metallic wire[J]. Applied Physics Letters, 89, 103101(2006).
[28] Li P, Yan X N, Zhou F et al. A capillary force-induced Au nanoparticle-Ag nanowire single hot spot platform for SERS analysis[J]. Journal of Materials Chemistry C, 5, 3229-3237(2017).
[29] Fang Y R, Wei H, Hao F et al. Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons[J]. Nano Letters, 9, 2049-2053(2009).
[30] Hao J J, Liu T, Huang Y Z et al. Metal nanoparticle-nanowire assisted SERS on film[J]. The Journal of Physical Chemistry C, 119, 19376-19381(2015).
[31] Huang Y Z, Fang Y R, Zhang Z L et al. Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering[J]. Light: Science & Applications, 3, e199(2014).
[32] Wei H, Hao F, Huang Y Z et al. Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems[J]. Nano Letters, 8, 2497-2502(2008).
[33] Wei H, Wang Z, Tian X et al[J]. Cascaded logic gates in nanophotonic plasmon networks Nature Communications, 2, 387.
[34] Wang G P. Surface plasmon polariton propagation in nanoscale metal gap waveguides[J]. Optics Letters, 29, 1992-1994(2004).
[35] Akimov A V, Mukherjee A, Yu C L et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots[J]. Nature, 450, 402-406(2007).
[36] Tame M S. McEnery K R, Özdemir Ş K, et al. Quantum plasmonics[J]. Nature Physics, 9, 329-340(2013).
[37] Maier S A, Brongersma M L, Kik P G et al. Plasmonics: a route to nanoscale optical devices[J]. Advanced Materials, 13, 1501-1505(2001).
[38] Wei H, Li Z P, Tian X R et al. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks[J]. Nano Letters, 11, 471-475(2011).
[39] Li Q, Wei H, Xu H X. Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire[J]. Nano Letters, 15, 8181-8187(2015).
[40] Frimmer M, Chen Y T, Koenderink A F. Scanning emitter lifetime imaging microscopy for spontaneous emission control[J]. Physical Review Letters, 107, 123602(2011).
[42] Chang D E, Sørensen A S, Hemmer P R et al. Strong coupling of single emitters to surface plasmons[J]. Physical Review B, 76, 035420(2007).
[44] Bogdanov S, Shalaginov M Y, Lagutchev A et al. Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas[J]. Nano Letters, 18, 4837-4844(2018).
[45] Punj D, Regmi R, Devilez A et al. Self-assembled nanoparticle dimer antennas for plasmonic-enhanced single-molecule fluorescence detection at micromolar concentrations[J]. ACS Photonics, 2, 1099-1107(2015).
[46] Fukui T, Naiki H, Masuo S. In situ observation of surface-enhanced Raman scattering from silver nanoparticle dimers and trimers fabricated using atomic force microscopy manipulation[J]. The Journal of Physical Chemistry C, 121, 19329-19333(2017).
[47] Tong L M, Zhu T, Liu Z F. Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement[J]. Applied Physics Letters, 92, 023109(2008).
[48] Kenens B, Rybachuk M, Hofkens J et al. Silver nanowires terminated by metallic nanoparticles as effective plasmonic antennas[J]. Journal of Physical Chemistry C, 117, 2547-2553(2013).
[49] Bek A, Jansen R, Ringler M et al. Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches[J]. Nano Letters, 8, 485-490(2008).
[50] Schietinger S, Barth M, Aichele T et al. Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature[J]. Nano Letters, 9, 1694-1698(2009).
[51] Andersen S K H, Kumar S, Bozhevolnyi S I. Ultrabright linearly polarized photon generation from a nitrogen vacancy center in a nanocube dimer antenna[J]. Nano Letters, 17, 3889-3895(2017).
[52] Khatua S. Paulo P M R, Yuan H F, et al. Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods[J]. ACS Nano, 8, 4440-4449(2014).
[53] Berberan-Santos M N, Valeur B. Molecular fluorescence: principles and application[M]. Germany: Wiley-VCH(2001).
[54] Sugimoto H, Chen T, Wang R et al. Plasmon-enhanced emission rate of silicon nanocrystals in gold nanorod composites[J]. ACS Photonics, 2, 1298-1305(2015).
[56] Yang X G, Bao D H, Li B J. Plasmon-mediated whispering-gallery-mode emission from quantum-dot-coated gold nanosphere[J]. Journal of Physical Chemistry C, 119, 25476-25481(2015).
[57] Purcell E M. Spontaneous emission probabilities at radio frequencies[J]. Physical Review, 69, 681(1946).
[58] Palik E D[M]. Handbook of optical constants of solids(1985).
[59] Jia H W, Liu H T, Zhong Y. Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas[J]. Scientific Reports, 5, 8456(2015).
[61] Wang H Y, Lin Y, Ma P Z et al. Tunable fluorescence emission of molecules with controllable positions within the metallic nanogap between gold nanorods and a gold film[J]. Journal of Materials Chemistry C, 7, 13526-13535(2019).
[63] Schuller J A, Barnard E S, Cai W et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 9, 193-204(2010).
[64] Giannini V. Fernández-Domínguez A I, Sonnefraud Y, et al. Controlling light localization and light-matter interactions with nanoplasmonics[J]. Small, 6, 2498-2507(2010).
[65] McBride J, Treadway J, Feldman L C et al. Structural basis for near unity quantum yield core/shell nanostructures[J]. Nano Letters, 6, 1496-1501(2006).
[66] Smith A M, Mohs A M, Nie S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain[J]. Nature Nanotechnology, 4, 56-63(2009).
[67] Frecker T, Bailey D, Arzeta-Ferrer X et al. Review: quantum dots and their application in lighting, displays, and biology[J]. ECS Journal of Solid State Science and Technology, 5, R3019-R3031(2016).
[68] Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence[J]. Physical Review Letters, 96, 113002(2006).
Get Citation
Copy Citation Text
Yuan Hongrui, Zhong Ying, Liu Haitao. Enhancement of Spontaneous Emission and Surface Plasmon Polariton Propagation of Quantum Dots Fluorescence in a Coupling Structure of Gold Nanosphere and Sliver Nanowire[J]. Chinese Journal of Lasers, 2020, 47(10): 1013001
Category: micro and nano optics
Received: Feb. 5, 2020
Accepted: --
Published Online: Oct. 10, 2020
The Author Email: Liu Haitao (liuht@nankai.edu.cn)