Chinese Journal of Lasers, Volume. 47, Issue 10, 1013001(2020)

Enhancement of Spontaneous Emission and Surface Plasmon Polariton Propagation of Quantum Dots Fluorescence in a Coupling Structure of Gold Nanosphere and Sliver Nanowire

Yuan Hongrui1, Zhong Ying2, and Liu Haitao1、*
Author Affiliations
  • 1Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
  • 2State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • show less
    References(68)

    [2] Michler P, Imamoglu A, Mason M D et al. Quantum correlation among photons from a single quantum dot at room temperature[J]. Nature, 406, 968-970(2000).

    [3] Gisin N, Ribordy G, Tittel W et al. Quantum cryptography[J]. Reviews of Modern Physics, 74, 145-195(2002).

    [6] Li M, Cushing S K, Wu N Q. Plasmon-enhanced optical sensors: a review[J]. The Analyst, 140, 386-406(2015).

    [8] Faraon A, Majumdar A, Englund D et al. Integrated quantum optical networks based on quantum dots and photonic crystals[J]. New Journal of Physics, 13, 055025(2011).

    [9] Pacifici D, Lezec H J, Atwater H A. All-optical modulation by plasmonic excitation of CdSe quantum dots[J]. Nature Photonics, 1, 402-406(2007).

    [11] Hoang T B, Akselrod G M, Argyropoulos C et al. Ultrafast spontaneous emission source using plasmonic nanoantennas[J]. Nature Communications, 6, 7788(2015).

    [12] Ratchford D, Shafiei F, Kim S et al. Manipulating coupling between a single semiconductor quantum dot and single gold nanoparticle[J]. Nano Letters, 11, 1049-1054(2011).

    [13] Ji B, Giovanelli E, Habert B et al. Non-blinking quantum dot with a plasmonic nanoshell resonator[J]. Nature Nanotechnology, 10, 170-175(2015).

    [14] Morozov S, Gaio M, Maier S A et al. Metal-dielectric parabolic antenna for directing single photons[J]. Nano Letters, 18, 3060-3065(2018).

    [15] Chang D E, Sørensen A S, Demler E A et al. A single-photon transistor using nanoscale surface plasmons[J]. Nature Physics, 3, 807-812(2007).

    [16] Falk A L. Koppens F H L, Yu C L, et al. Near-field electrical detection of optical plasmons and single-plasmon sources[J]. Nature Physics, 5, 475-479(2009).

    [17] Engheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials[J]. Science, 317, 1698-1702(2007).

    [18] Hoang T B, Akselrod G M, Mikkelsen M H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities[J]. Nano Letters, 16, 270-275(2016).

    [19] Yuan C T, Yu P, Ko H C et al. Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots[J]. ACS Nano, 3, 3051-3056(2009).

    [20] Kinkhabwala A, Yu Z, Fan S et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nature Photonics, 3, 654-657(2009).

    [21] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews, 104, 293-346(2004).

    [22] Ghosh S K, Pal T. ChemInform abstract: interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications[J]. Chemical Reviews, 107, 4797-4862(2007).

    [23] Pelton M. Modified spontaneous emission in nanophotonic structures[J]. Nature Photonics, 9, 427-435(2015).

    [24] Noginov M A, Zhu G, Belgrave A M et al. Demonstration of a spaser-based nanolaser[J]. Nature, 460, 1110-1112(2009).

    [26] Knight M W, Grady N K, Bardhan R et al. Nanoparticle-mediated coupling of light into a nanowire[J]. Nano Letters, 7, 2346-2350(2007).

    [27] Hao F, Nordlander P. Plasmonic coupling between a metallic nanosphere and a thin metallic wire[J]. Applied Physics Letters, 89, 103101(2006).

    [28] Li P, Yan X N, Zhou F et al. A capillary force-induced Au nanoparticle-Ag nanowire single hot spot platform for SERS analysis[J]. Journal of Materials Chemistry C, 5, 3229-3237(2017).

    [29] Fang Y R, Wei H, Hao F et al. Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons[J]. Nano Letters, 9, 2049-2053(2009).

    [30] Hao J J, Liu T, Huang Y Z et al. Metal nanoparticle-nanowire assisted SERS on film[J]. The Journal of Physical Chemistry C, 119, 19376-19381(2015).

    [31] Huang Y Z, Fang Y R, Zhang Z L et al. Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering[J]. Light: Science & Applications, 3, e199(2014).

    [32] Wei H, Hao F, Huang Y Z et al. Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems[J]. Nano Letters, 8, 2497-2502(2008).

    [33] Wei H, Wang Z, Tian X et al[J]. Cascaded logic gates in nanophotonic plasmon networks Nature Communications, 2, 387.

    [34] Wang G P. Surface plasmon polariton propagation in nanoscale metal gap waveguides[J]. Optics Letters, 29, 1992-1994(2004).

    [35] Akimov A V, Mukherjee A, Yu C L et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots[J]. Nature, 450, 402-406(2007).

    [36] Tame M S. McEnery K R, Özdemir Ş K, et al. Quantum plasmonics[J]. Nature Physics, 9, 329-340(2013).

    [37] Maier S A, Brongersma M L, Kik P G et al. Plasmonics: a route to nanoscale optical devices[J]. Advanced Materials, 13, 1501-1505(2001).

    [38] Wei H, Li Z P, Tian X R et al. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks[J]. Nano Letters, 11, 471-475(2011).

    [39] Li Q, Wei H, Xu H X. Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire[J]. Nano Letters, 15, 8181-8187(2015).

    [40] Frimmer M, Chen Y T, Koenderink A F. Scanning emitter lifetime imaging microscopy for spontaneous emission control[J]. Physical Review Letters, 107, 123602(2011).

    [42] Chang D E, Sørensen A S, Hemmer P R et al. Strong coupling of single emitters to surface plasmons[J]. Physical Review B, 76, 035420(2007).

    [44] Bogdanov S, Shalaginov M Y, Lagutchev A et al. Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas[J]. Nano Letters, 18, 4837-4844(2018).

    [45] Punj D, Regmi R, Devilez A et al. Self-assembled nanoparticle dimer antennas for plasmonic-enhanced single-molecule fluorescence detection at micromolar concentrations[J]. ACS Photonics, 2, 1099-1107(2015).

    [46] Fukui T, Naiki H, Masuo S. In situ observation of surface-enhanced Raman scattering from silver nanoparticle dimers and trimers fabricated using atomic force microscopy manipulation[J]. The Journal of Physical Chemistry C, 121, 19329-19333(2017).

    [47] Tong L M, Zhu T, Liu Z F. Atomic force microscope manipulation of gold nanoparticles for controlled Raman enhancement[J]. Applied Physics Letters, 92, 023109(2008).

    [48] Kenens B, Rybachuk M, Hofkens J et al. Silver nanowires terminated by metallic nanoparticles as effective plasmonic antennas[J]. Journal of Physical Chemistry C, 117, 2547-2553(2013).

    [49] Bek A, Jansen R, Ringler M et al. Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches[J]. Nano Letters, 8, 485-490(2008).

    [50] Schietinger S, Barth M, Aichele T et al. Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature[J]. Nano Letters, 9, 1694-1698(2009).

    [51] Andersen S K H, Kumar S, Bozhevolnyi S I. Ultrabright linearly polarized photon generation from a nitrogen vacancy center in a nanocube dimer antenna[J]. Nano Letters, 17, 3889-3895(2017).

    [52] Khatua S. Paulo P M R, Yuan H F, et al. Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods[J]. ACS Nano, 8, 4440-4449(2014).

    [53] Berberan-Santos M N, Valeur B. Molecular fluorescence: principles and application[M]. Germany: Wiley-VCH(2001).

    [54] Sugimoto H, Chen T, Wang R et al. Plasmon-enhanced emission rate of silicon nanocrystals in gold nanorod composites[J]. ACS Photonics, 2, 1298-1305(2015).

    [56] Yang X G, Bao D H, Li B J. Plasmon-mediated whispering-gallery-mode emission from quantum-dot-coated gold nanosphere[J]. Journal of Physical Chemistry C, 119, 25476-25481(2015).

    [57] Purcell E M. Spontaneous emission probabilities at radio frequencies[J]. Physical Review, 69, 681(1946).

    [58] Palik E D[M]. Handbook of optical constants of solids(1985).

    [59] Jia H W, Liu H T, Zhong Y. Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas[J]. Scientific Reports, 5, 8456(2015).

    [61] Wang H Y, Lin Y, Ma P Z et al. Tunable fluorescence emission of molecules with controllable positions within the metallic nanogap between gold nanorods and a gold film[J]. Journal of Materials Chemistry C, 7, 13526-13535(2019).

    [63] Schuller J A, Barnard E S, Cai W et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 9, 193-204(2010).

    [64] Giannini V. Fernández-Domínguez A I, Sonnefraud Y, et al. Controlling light localization and light-matter interactions with nanoplasmonics[J]. Small, 6, 2498-2507(2010).

    [65] McBride J, Treadway J, Feldman L C et al. Structural basis for near unity quantum yield core/shell nanostructures[J]. Nano Letters, 6, 1496-1501(2006).

    [66] Smith A M, Mohs A M, Nie S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain[J]. Nature Nanotechnology, 4, 56-63(2009).

    [67] Frecker T, Bailey D, Arzeta-Ferrer X et al. Review: quantum dots and their application in lighting, displays, and biology[J]. ECS Journal of Solid State Science and Technology, 5, R3019-R3031(2016).

    [68] Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence[J]. Physical Review Letters, 96, 113002(2006).

    Tools

    Get Citation

    Copy Citation Text

    Yuan Hongrui, Zhong Ying, Liu Haitao. Enhancement of Spontaneous Emission and Surface Plasmon Polariton Propagation of Quantum Dots Fluorescence in a Coupling Structure of Gold Nanosphere and Sliver Nanowire[J]. Chinese Journal of Lasers, 2020, 47(10): 1013001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: micro and nano optics

    Received: Feb. 5, 2020

    Accepted: --

    Published Online: Oct. 10, 2020

    The Author Email: Liu Haitao (liuht@nankai.edu.cn)

    DOI:10.3788/CJL202047.1013001

    Topics