Semiconductor Optoelectronics, Volume. 46, Issue 3, 381(2025)

Research Progress on High-Efficiency Optical Modulators

QIN Li1, XU Yingshuai1,2, QIU Cheng1, CHEN Yongyi1,3, ZHOU Zhipeng1,2, ZHANG Xunyu1,2, QIAO Yiman1,2, WANG Yubing1, LIANG Lei1, LEI Yuxin1, SONG Yue1, JIA Peng1, ZENG Yugang1, NING Yongqiang1, and WANG Lijun1
Author Affiliations
  • 1State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, CHN
  • 2University of Chinese Academy of Sciences, Beijing 100049, CHN
  • 3Jlight Semiconductor Technology Co., Ltd. Changchun 130102, CHN
  • show less
    References(129)

    [1] [1] Romagnoli M, Sorianello V, Midrio M, et al. Graphene-based integrated photonics for next-generation datacom and telecom[J]. Nature Reviews Materials, 2018, 3(10): 392-414.

    [2] [2] Witzens J. High-speed silicon photonics modulators[J]. Proceedings of the IEEE, 2018, 106(12): 2158-2182.

    [3] [3] Rotta D, Preve G B, Serrano Rodrigo A, et al. The ESA project PIOTS: setting up a complete pilot line for the packaging of photonic integrated circuits for space applications[J]. Proc. SPIE, 2021: 195.

    [4] [4] Xiao Z, Liu W, Xu S, et al. Recent progress in silicon-based photonic integrated circuits and emerging applications[J]. Advanced Optical Materials, 2023, 11(20): 2301028.

    [5] [5] Rahim A, Ryckeboer E, Subramanian A Z, et al. Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits[J]. Journal of Lightwave Technology, 2017, 35(4): 639-649.

    [6] [6] Yan Z, Han Y, Lin L, et al. A monolithic InP/SOI platform for integrated photonics[J]. Light, Science & Applications, 2021, 10(1): 200.

    [7] [7] Xiao X, Wang L, Li M, et al. High speed silicon optical modulators: applications, technologies and integrations[C]//2016 Progress in Electromagnetic Research Symposium (PIERS), 2016: 3376.

    [8] [8] Takiguchi M, Yokoo A, Nozaki K, et al. Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal[J]. APL Photonics, 2017, 2(4): 046106.

    [9] [9] Kato H, Bull J D, Tsou B P C, et al. A high-speed GaAs-based electro-optic modulator for polarization, intensity, and phase modulation[J]. Proc. SPIE, 2013: 883205.

    [10] [10] Boeuf F, Han J H, Takagi S, et al. Benchmarking Si, SiGe, and III–V/Si hybrid SIS optical modulators for datacenter applications[J]. Journal of Lightwave Technology, 2017, 35(18): 4047-4055.

    [11] [11] Dong G, Liang S L, Yu Y, et al. Direct optical modulation of photonic crystal Fano laserviathe mirror[C]//OSA Nonlinear Optics 2021, 2021: NF2A.2.

    [12] [12] Lau K Y, Perros A P, Li D, et al. Scalable graphene electro-optical modulators for all-fibre pulsed lasers[J]. Nanoscale, 2021, 13(21): 9873-9880.

    [13] [13] Cox C, Ackerman E, Helkey R, et al. Techniques and performance of intensity-modulation direct-detection analog optical links[J]. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(8): 1375-1383.

    [14] [14] Roder H. Amplitude, phase, and frequency modulation[J]. Proceedings of the Institute of Radio Engineers, 1931, 19(12): 2145-2176.

    [15] [15] Thomson D J, Zhang W, Ebert M, et al. High efficiency and high-speed silicon optical modulators[C]//2023 23rd International Conference on Transparent Optical Networks (ICTON), 2023: 1-4.

    [16] [16] Zhou H, Dong J, Cheng J, et al. Photonic matrix multiplication lights up photonic accelerator and beyond[J]. Light, Science & Applications, 2022, 11(1): 30.

    [17] [17] Rigrod W. The optical ring resonator[J]. 1965, 44(5): 907-916.

    [18] [18] Debnath K, Thomson D J, Zhang W, et al. All-silicon carrier accumulation modulator based on a lateral metal-oxide-semiconductor capacitor[J]. Photonics Research, 2018, 6(5): 373.

    [19] [19] Jin L, Chen Q, Liu W, et al. Electro-absorption modulator with dual carrier accumulation layers based on epsilon-near-zero ITO[J]. Plasmonics, 2016, 11(4): 1087-1092.

    [20] [20] Abraham A, Dubray O, Olivier S, et al. Low-voltage and low-loss silicon modulator based on carrier accumulation using a vertical slot waveguide[C]//2015 IEEE 12th International Conference on Group IV Photonics (GFP), 2015: 118-119.

    [21] [21] Kajikawa K, Tabei T, Sunami H. An infrared silicon optical modulator of metal–oxide–semiconductor capacitor based on accumulation-carrier absorption[J]. Japanese Journal of Applied Physics, 2009, 48(4S): 04C107.

    [22] [22] Han J H, Boeuf F, Fujikata J, et al. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator[J]. Nature Photonics, 2017, 11: 486-490.

    [23] [23] Fiedler F, Schlachetzki A. Optical parameters of InP-based waveguides[J]. Solid-State Electronics, 1987, 30(1): 73-83.

    [24] [24] Griffin R A, CArter A C. Advances in inp optical modulators[C]//2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference, 2008: 1-3.

    [25] [25] Foyt A. The electro-optic applications of InP[J]. Journal of Crystal Growth, 1981, 54(1): 1-8.

    [26] [26] Griffin R A, Jones S K, Whitbread N, et al. InP Mach–Zehnder modulator platform for 10/40/100/200-Gb/s operation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(6): 3401209.

    [27] [27] Kikuchi N, Yamada E, Shibata Y, et al. High-speed InP-based Mach-Zehnder modulator for advanced modulation formats[C]//IEEE Compound Semiconductor Integrated Circuit Symposium, 2012: 1-4.

    [28] [28] Tsang H K, Soole J B D, LeBlanc H P, et al. Efficient InGaAsP/InP multiple quantum well waveguide optical phase modulator[J]. Applied Physics Letters, 1990, 57(22): 2285-2287.

    [29] [29] Mohseni H, An H, Shellenbarger Z A, et al. Highly linear and efficient phase modulators based on GaInAsP-InP three-step quantum wells[J]. Applied Physics Letters, 2005, 86(3): 031103.

    [30] [30] Xing J, Sun C, Xiong B, et al. 40 GHz and 1.1-V V InP-based n-i-n EO modulator[C]//Conference on Lasers and Electro-Optics, 2022: SM3N.6.

    [31] [31] Ogiso Y, Ozaki J, Ueda Y, et al. 80-GHz bandwidth and 1.5-V V InP-based IQ modulator[J]. Journal of Lightwave Technology, 2020, 38(2): 249-255.

    [32] [32] Weis R S, Gaylord T K. Lithium niobate: summary of physical properties and crystal structure[J]. Applied Physics A, 1985, 37(4): 191-203.

    [33] [33] Qi Y, Li Y. Integrated lithium niobate photonics[J]. Nanophotonics, 2020, 9(6): 1287-1320.

    [34] [34] Zhu D, Shao L, Yu M, et al. Integrated photonics on thin-film lithium niobate[J]. 2021, 13(2): 242-352.

    [35] [35] Xu Y. Ferroelectric Materials and Their Applications[M]. Amsterdam: Elsevier, 1991

    [36] [36] Setter N, Damjanovic D, Eng L, et al. Ferroelectric thin films: review of materials, properties, and applications[J]. Journal of Applied Physics, 2006, 100(5): 051606.

    [37] [37] Wang C, Zhang M, Stern B, et al. Nanophotonic lithium niobate electro-optic modulators[J]. Optics Express, 2018, 26(2): 1547-1555.

    [38] [38] Wang X, Weigel P O, Zhao J, et al. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate[J]. APL Photonics, 2019, 4(9): 096101.

    [39] [39] Chen N, Yu Y, Lou K, et al. Ultra-high efficiency electro-optic modulator on thin-film lithium niobate[C]//28th Microoptics Conference (MOC), 2023: 1-2.

    [40] [40] Li Y, Lan T, Yang D, et al. High-performance Mach-Zehnder modulator based on thin-film lithium niobate with low voltage-length product[J]. ACS Omega, 2023, 8(10): 9644-9651.

    [41] [41] Jin M, Chen J, Sua Y, et al. Efficient electro-optical modulation on thin-film lithium niobate[J]. Optics Letters, 2021, 46(8): 1884-1887.

    [42] [42] Huang X, Liu Y, Guan H, et al. High-efficiency, slow-light modulator on hybrid thin-film lithium niobate platform[J]. IEEE Photonics Technology Letters, 2021, 33(19): 1093-1096.

    [43] [43] Pan B, Cao H, Huang Y, et al. Compact electro-optic modulator on lithium niobate[J]. Photonics Research, 2022, 10(3): 697-702.

    [44] [44] Pan B C, Liu H X, Xu H C, et al. Ultra-compact lithium niobate microcavity electro-optic modulator beyond 110 GHz[J]. Chip, 2022, 1(4): 100029.

    [45] [45] Pohl D, Messner A, Kaufmann F, et al. 100-GBd waveguide Bragg grating modulator in thin-film lithium niobate[J]. IEEE Photonics Technology Letters, 2021, 33(2): 85-88.

    [46] [46] Kaino T, Tomaru S. Organic materials for nonlinear optics[J]. Advanced Materials, 1993, 5(3): 172-178.

    [47] [47] Kieninger C, Kutuvantavida Y, Elder D L, et al. Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator[J]. Optica, 2018, 5(6): 739.

    [48] [48] Koeber S, Palmer R, Lauermann M, et al. Femtojoule electro-optic modulation using a silicon–organic hybrid device[J]. Light: Science & Applications, 2015, 4(2): e255.

    [49] [49] Liu C F, Lin H, Li S S, et al. Smart responsive photoelectric organic modulator integrated with versatile optoelectronic characteristics[J]. Advanced Functional Materials, 2022, 32(17): 2111276.

    [50] [50] Ullah F, Deng N, Qiu F. Recent progress in electro-optic polymer for ultra-fast communication[J]. PhotoniX, 2021, 2(1): 13.

    [51] [51] Liu J, Xu G, Liu F, et al. Recent advances in polymer electro-optic modulators[J]. RSC Advances, 2015, 5(21): 15784-15794.

    [52] [52] Lauermann M, Palmer R, Koeber S, et al. Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats[J]. Optics Express, 2014, 22(24): 29927-29936.

    [53] [53] Lin C Y, Wang X, Chakravarty S, et al. Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement[J]. Applied Physics Letters, 2010, 97(9): 093304.

    [54] [54] Palmer R, Koeber S, Elder D L, et al. High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material[J]. Journal of Lightwave Technology, 2014, 32(16): 2726-2734.

    [55] [55] Zhang X, Hosseini A, Lin X, et al. Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(6): 3401115.

    [56] [56] Wang Y, Liu T, Liu J, et al. Organic electro-optic polymer materials and organic-based hybrid electro-optic modulators[J]. Journal of Semiconductors, 2022, 43(10): 32-42.

    [57] [57] Kamada S, Ueda R, Yamada C, et al. Superiorly low half-wave voltage electro-optic polymer modulator for visible photonics[J]. Optics Express, 2022, 30(11): 19771-19780.

    [58] [58] Rutirawut T, Talataisong W, Gardes F Y. Designs of silicon nitride slot waveguide modulators with electro-optic polymer and the effect of induced charges in Si-substrate on their performance[J]. IEEE Photonics Journal, 2021, 13(2): 6600715.

    [59] [59] Alloatti L, Palmer R, Diebold S, et al. 100 GHz silicon–organic hybrid modulator[J]. Light: Science & Applications, 2014, 3(5): e173.

    [60] [60] Lu G W, Hong J, Qiu F, et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s−1 for energy-efficient datacentres and harsh-environment applications[J]. Nature Communications, 2020, 11(1): 4224.

    [61] [61] Wolf S, Zwickel H, Kieninger C, et al. Coherent modulation up to 100 GBd 16QAM using silicon-organic hybrid (SOH) devices[J]. Optics Express, 2018, 26(1): 220-232.

    [62] [62] Janjan B, Zarifkar A, Miri M. Ultra-compact high-speed electro-optical modulator with extremely low energy consumption based on polymer-filled hybrid plasmonic waveguide[J]. Plasmonics, 2016, 11(2): 509-514.

    [63] [63] Wolf S, Zwickel H, Hartmann W, et al. Silicon-organic hybrid (SOH) Mach-Zehnder modulators for 100 gbit/s on-off keying[J]. Scientific Reports, 2018, 8(1): 2598.

    [64] [64] Falkovsky L A. Optical properties of graphene[J]. Journal of Physics: Conference Series, 2008, 129: 012004.

    [65] [65] Sun Z, Fang S, Hu Y H. 3D graphene materials: from understanding to design and synthesis control[J]. Chemical Reviews, 2020, 120(18): 10336-10453.

    [66] [66] Li W, Chen B, Meng C, et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 2014, 14(2): 955-959.

    [67] [67] Phare C T, Lee Y D, Cardenas J, et al. Graphene electro-optic modulator with 30 GHz bandwidth[J]. Nature Photonics, 2015, 9(8): 511-514.

    [68] [68] Liu J, Khan Z U, Wang C, et al. Review of graphene modulators from the low to the high figure of merits[J]. Journal of Physics D: Applied Physics, 2020, 53(23): 233002.

    [69] [69] Grigorenko A N, Polini M, Novoselov K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6(11): 749-758.

    [70] [70] Hao R, Du W, Chen H, et al. Ultra-compact optical modulator by graphene induced electro-refraction effect[J]. Applied Physics Letters, 2013, 103(6): 061116.

    [71] [71] Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators[J]. Nature Photonics, 2010, 4: 518-526.

    [72] [72] Kim Y, Takenaka M, Osada T, et al. Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators[J]. Scientific Reports, 2014, 4: 4683.

    [73] [73] Ahmad Noorden A F, Daud S, Ali J. Implication of plasma dispersion effect for controlling refractive index in microresonator[C]//International Conference on Plasma Science and Applications, 2017: 030001.

    [74] [74] Rahim A, Hermans A, Wohlfeil B, et al. Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies[J]. Advanced Photonics, 2021, 3(2): 024003.

    [75] [75] Zhang L, Sun X, Yu H, et al. Plasmonic metafibers electro-optic modulators[J]. Light, Science & Applications, 2023, 12(1): 198.

    [76] [76] Zhou D B, Liang S, Wang H T, et al. Analysis and optimization of 1.5-m InGaAsP/InP MQWs electroabsorption modulator[J]. Optik, 2019, 182: 1088-1092.

    [77] [77] Jeong U S, Kim K, Lee K, et al. A compact and low-driving-voltage silicon electro-absorption modulator utilizing a Schottky diode operating up to 13.2 GHz in C-band[J]. Japanese Journal of Applied Physics, 2020, 59(12): 122001.

    [78] [78] Han S K, Ramaswamy R V, Li W Q, et al. Efficient electrooptic modulator in InGaAlAs/InP optical waveguides[J]. IEEE Photonics Technology Letters, 1993, 5(1): 46-49.

    [79] [79] Rouvalis E, Metzger C, Charpentier A, et al. A low insertion loss and low V InP IQ modulator for advanced modulation formats[C]//2014 The European Conference on Optical Communication (ECOC), 2014: 1-3.

    [80] [80] Ozaki J, Nakano S, Ogiso Y, et al. Ultra-low power dissipation (<2.4 W) coherent InP modulator module with CMOS driver IC[C]//2018 European Conference on Optical Communication (ECOC), 2018: 1-3.

    [81] [81] Letal G, Prosyk K, Millett R, et al. Low loss InP C-band IQ modulator with 40GHz bandwidth and 1.5V V[C]//2015 Optical Fiber Communications Conference and Exhibition (OFC), 2015: 1-3.

    [82] [82] Ralph H I. On the theory of the franz-keldysh effect[J]. Journal of Physics C: Solid State Physics, 1968, 1(2): 378-386.

    [83] [83] Wen G, Lin Y, Jiang H, et al. Quantum-confined Stark effects in semiconductor quantum dots[J]. Physical Review B, 1995, 52(8): 5913.

    [84] [84] Treyz G V, May P G, Halbout J M. Silicon Mach-Zehnder waveguide interferometers based on the plasma dispersion effect[J]. Applied Physics Letters, 1991, 59(7): 771-773.

    [85] [85] Almeida V R, Xu Q, Lipson M. Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect[J]. Optics Letters, 2005, 30(18): 2403-2405.

    [86] [86] Soref R, Bennett B. Electrooptical effects in silicon[J]. IEEE Journal of Quantum Electronics, 1987, 23(1): 123-129.

    [87] [87] Zhang W, Debnath K, Chen B, et al. High bandwidth capacitance efficient silicon MOS modulator[J]. Journal of Lightwave Technology, 2021, 39(1): 201-207.

    [88] [88] Sodagar M, Hosseinnia A H, Isautier P, et al. Compact, 15 Gb/s electro-optic modulator through carrier accumulation in a hybrid Si/SiO(2)/Si microdisk[J]. Optics Express, 2015, 23(22): 28306-28315.

    [89] [89] Webster M, Gothoskar P, Patel V, et al. An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters[C]//11th International Conference on Group IV Photonics (GFP), 2014: 1-2.

    [90] [90] Fujikata J, TAkahashi S, TAkahashi M, et al. High-performance MOS-capacitor-type Si optical modulator and surface-illumination-type Ge photodetector for optical interconnection[J]. Japanese Journal of Applied Physics, 2016, 55(4S): 04EC1.

    [91] [91] Amin R, Maiti R, Carfano C, et al. 0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics[J]. APL Photonics, 2018, 3(12): 126104.

    [92] [92] Amin R, Maiti R, Gui Y, et al. Sub-wavelength GHz-fast broadband ITO Mach-Zehnder modulator on silicon photonics[J]. Optica, 2020, 7(4): 333-335.

    [93] [93] Ohno S, Li Q, Sekine N, et al. Taperless Si hybrid optical phase shifter based on a metal-oxide-semiconductor capacitor using an ultrathin InP membrane[J]. Optics Express, 2020, 28(24): 35663-35673.

    [94] [94] Manipatruni S, Xu Q, Schmidt B, et al. High speed carrier injection 18 gb/s silicon micro-ring electro-optic modulator[C]//LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, 2007: 537-538.

    [95] [95] Nedeljkovic M, Littlejohns C G, Khokhar A Z, et al. Silicon-on-insulator free-carrier injection modulators for the mid-infrared[J]. Optics Letters, 2019, 44(4): 915-918.

    [96] [96] Manolatou C, Lipson M. All-optical silicon modulators based on carrier injection by two-photon absorption[J]. Journal of Lightwave Technology, 2006, 24(3): 1433-1439.

    [97] [97] Kim Y, Fujikata J, Takahashi S, et al. SiGe-based carrier-injection Mach-Zehnder modulator with enhanced plasma dispersion effect in strained SiGe[C]//2015 Optical Fiber Communications Conference and Exhibition (OFC), 2015: 1-3.

    [98] [98] Kim Y, Fujikata J, Takahashi S, et al. First demonstration of SiGe-based carrier-injection Mach-Zehnder modulator with enhanced plasma dispersion effect[J]. Optics Express, 2016, 24(3): 1979-1985.

    [99] [99] Spector S J, Grein M E, Schulein R T, et al. Compact carrier injection based Mach-Zehnder modulator in silicon[C]//Integrated Photonics and Nanophotonics Research and Applications / Slow and Fast Light, 2007: ITuE5.

    [100] [100] Akiyama S, Usuki T. High-speed and efficient silicon modulator based on forward-biased pin diodes[J]. Frontiers in Physics, 2014, 2: 65.

    [101] [101] Hanim A, Mardiana B, Hazura H, et al. On the modulation phase efficiency of a silicon p-i-n diode optical modulator[C]//International Conference on Photonics 2010, 2010: 1-3.

    [102] [102] Sobu Y, Simoyama T, Tanaka S, et al. 70 gbaud operation of all-silicon Mach–Zehnder modulator based on forward-biased PIN diodes and passive equalizer[C]//2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), 2019: 1-3.

    [103] [103] Baba T, Akiyama S, Imai M, et al. 25-Gb/s broadband silicon modulator with 0.31-V·cm VL based on forward-biased PIN diodes embedded with passive equalizer[J]. Optics Express, 2015, 23(26): 32950-32960.

    [104] [104] Yu H, Tu D, Huang X, et al. A novel silicon forward-biased PIN Mach-Zehnder modulator with two operating states[J]. Micromachines, 2023, 14(8): 1608.

    [105] [105] Feng S, Hu X, Feng L, et al. The numerical investigations of SiGe/Si heterojunction electro-optic modulator in mid-infrared[J]. Frontiers in Physics, 2022, 10: 1019113.

    [106] [106] Feng S, Li L B, Xue B. Research on a micro-nano Si/SiGe/Si double heterojunction electro-optic modulation structure[J]. Advances in Condensed Matter Physics, 2018, 2018(1): 8297650.

    [107] [107] Sariang L, Arya S C. Mathematical modeling of carrier injection based PIN junction optical phase shifter using evolutionary algorithm[C]//2019 2nd International Conference on Innovations in Electronics, Signal Processing and Communication (IESC), 2019: 1-6.

    [108] [108] Liu A, Liao L, Rubin D, et al. High-speed optical modulation based on carrier depletion in a silicon waveguide[J]. Optics Express, 2007, 15(2): 660-668.

    [109] [109] Zhou J, Wang J, Zhu L, et al. High baud rate all-silicon photonics carrier depletion modulators[J]. Journal of Lightwave Technology, 2020, 38(2): 272-281.

    [110] [110] Ding J, Chen H, Yang L, et al. Ultra-low-power carrier-depletion Mach-Zehnder silicon optical modulator[J]. Optics Express, 2012, 20(7): 7081-7087.

    [111] [111] Wang J, Qiu C, Li H, et al. Optimization and demonstration of a large-bandwidth carrier-depletion silicon optical modulator[J]. Journal of Lightwave Technology, 2013, 31(24): 4119-4125.

    [112] [112] Feng N N, Liao S, Feng D, et al. High speed carrier-depletion modulators with 14V-cm V_L integrated on 025m silicon-on-insulator waveguides[J]. Optics Express, 2010, 18(8): 7994.

    [113] [113] Park J W, You J B, Kim I G, et al. High-modulation efficiency silicon Mach-Zehnder optical modulator based on carrier depletion in a PN Diode[J]. Optics Express, 2009, 17(18): 15520-15524.

    [114] [114] Sun J, Kumar R, Sakib M, et al. A 128 gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning[J]. Journal of Lightwave Technology, 2019, 37(1): 110-115.

    [115] [115] Petousi D, Rito P, Lischke S, et al. Monolithically integrated high-extinction-ratio MZM with a segmented driver in photonic BiCMOS[J]. IEEE Photonics Technology Letters, 2016, 28(24): 2866-2869.

    [116] [116] Xiao X, Xu H, Li X, et al. High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization[J]. Optics Express, 2013, 21(4): 4116-4125.

    [117] [117] Liu J, Zhou G, Du J, et al. Silicon mode-loop Mach-Zehnder modulator with L-shaped PN junction for 0.37 V· cm VL high-efficiency modulation[J]. Photonics Research, 2022, 10(1): 214.

    [118] [118] Zhou G, Zhou L, Guo Y, et al. High-efficiency silicon Mach-Zehnder modulator with U-shaped PN junctions[C]//Conference on Lasers and Electro-Optics, 2019: JTh2A.42.

    [119] [119] Tanaka S, Simoyama T, Aoki T, et al. Ultralow-power (1.59 mW/gbps), 56-gbps PAM4 operation of Si photonic transmitter integrating segmented PIN Mach–Zehnder modulator and 28-nm CMOS driver[J]. Journal of Lightwave Technology, 2018, 36(5): 1275-1280.

    [120] [120] Ramesh Gabriel J S, Arunagiri S. Performance analysis of carrier depletion silicon PIN phase shifter[J]. Journal of Optical Communications, 2024, 44(s1): s131-s137.

    [121] [121] Tanaka S, Usuki T, Tanaka Y. Accurate SPICE model of forward-biased silicon PIN Mach–Zehnder modulator for an energy-efficient multilevel transmitter[J]. Journal of Lightwave Technology, 2018, 36(10): 1959-1969.

    [122] [122] Dubray O, Abraham A, Hassan K, et al. Electro-optical ring modulator: an ultracompact model for the comparison and optimization of p-n, p-i-n, and capacitive junction[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 3300110.

    [123] [123] Baba T, Akiyama S, Imai M, et al. 50-Gb/s ring-resonator-based silicon modulator[J]. Optics Express, 2013, 21(10): 11869-11876.

    [124] [124] Pantouvaki M, Yu H, Rakowski M, et al. Comparison of silicon ring modulators with interdigitated and lateral p-n junctions[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(2): 7900308.

    [125] [125] Li G, Zheng X, Yao J, et al. 25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning[J]. Optics Express, 2011, 19(21): 20435-20443.

    [126] [126] Zhu S, Fang Q, Yu M B, et al. Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides[J]. Optics Express, 2009, 17(23): 20891-20899.

    [127] [127] Hao R, Jin J M. Graphene embedded modulator with extremely small footprint and high modulation efficiency[J]. Journal of Photonics, 2014, 2014(1): 309350.

    [128] [128] Sorianello V, Midrio M, Contestabile G, et al. Graphene–silicon phase modulators with gigahertz bandwidth[J]. Nature Photonics, 2017, 12(1): 40-44.

    [129] [129] Shu H, Su Z, Huang L, et al. Significantly high modulation efficiency of compact graphene modulator based on silicon waveguide[J]. Scientific Reports, 2018, 8(1): 991.

    Tools

    Get Citation

    Copy Citation Text

    QIN Li, XU Yingshuai, QIU Cheng, CHEN Yongyi, ZHOU Zhipeng, ZHANG Xunyu, QIAO Yiman, WANG Yubing, LIANG Lei, LEI Yuxin, SONG Yue, JIA Peng, ZENG Yugang, NING Yongqiang, WANG Lijun. Research Progress on High-Efficiency Optical Modulators[J]. Semiconductor Optoelectronics, 2025, 46(3): 381

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 21, 2025

    Accepted: Sep. 18, 2025

    Published Online: Sep. 18, 2025

    The Author Email:

    DOI:10.16818/j.issn1001-5868.20250321002

    Topics