Laser & Optoelectronics Progress, Volume. 61, Issue 1, 0116005(2024)
Photostimulated Information Storage Material for Novel Near-Infrared Writing Based on Thermal-Assisted Excitation (Invited)
[1] Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 3, e177(2014).
[2] Sun L Q, Zhang E Y, Wang J et al. Advances in high density optical data storage based on near-field optical super resolution[J]. Journal of Optoelectronics·Laser, 12, 646-652(2001).
[3] Wang L, Zhang X, Wang Y et al. Femtosecond laser direct writing for eternal data storage: advances and challenges[J]. Chinese Journal of Lasers, 49, 1002504(2022).
[4] van den Eeckhout K, Smet P F, Poelman D. Persistent luminescence in Eu2+-doped compounds: a review[J]. Materials, 3, 2536-2566(2010).
[5] Li Y, Gecevicius M, Qiu J R. Long persistent phosphors: from fundamentals to applications[J]. Chemical Society Reviews, 45, 2090-2136(2016).
[6] Yang Q T, Risalat E, Sun Y M et al. Enhancement of near-infrared persistent luminescence of BaGa2O4∶Cr3+ by Sm3+ ion doping[J]. Chinese Journal of Lasers, 50, 0603003(2023).
[7] Yuan L F, Jin Y H, Su Y E et al. Optically stimulated luminescence materials: optically stimulated luminescence phosphors: principles, applications, and prospects[J]. Laser & Photonics Reviews, 14, 2000123(2020).
[8] Liu X G, Yan C H, Capobianco J A. Photon upconversion nanomaterials[J]. Chemical Society Reviews, 44, 1299-1301(2015).
[9] Zhou B, Shi B Y, Jin D Y et al. Controlling upconversion nanocrystals for emerging applications[J]. Nature Nanotechnology, 10, 924-936(2015).
[10] Li Y, Zhou S F, Li Y Y et al. Long persistent and photo-stimulated luminescence in Cr3+-doped Zn-Ga-Sn-O phosphors for deep and reproducible tissue imaging[J]. Journal of Materials Chemistry C, 2, 2657-2663(2014).
[11] Liu S, Cai H, Zhang S et al. An emerging NIR super-long persistent phosphor and its applications[J]. Materials Today Chemistry, 24, 100806(2022).
[12] Zhou J H, Long Z W, Qiu J B et al. A NIR to NIR rechargeable long persistent luminescence phosphor Ca2Ga2GeO7∶Yb3+, Tb3+[J]. Journal of Rare Earths, 39, 1520-1526(2021).
[13] Dou X J, Xiang H W, Wei P L et al. A novel phosphor CaZnGe2O6∶Bi3+ with persistent luminescence and photo-stimulated luminescence[J]. Materials Research Bulletin, 105, 226-230(2018).
[14] Aiwaili R, Sun Y M, Nuermaiti K et al. Preparation and optical properties of Bi2Ga3.985O9∶1.5%Fe3+, Eu3+ persistent luminescent nanoparticles[J]. Acta Optica Sinica, 44, 0216001(2024).
[15] Liu F, Liang Y J, Pan Z W. Detection of up-converted persistent luminescence in the near infrared emitted by the Zn₃Ga₂GeO₈∶Cr³⁺, Yb³⁺, Er³⁺ phosphor[J]. Physical Review Letters, 113, 177401(2014).
[16] Liu F, Chen Y F, Liang Y J et al. Phonon-assisted upconversion charging in Zn3Ga2GeO8∶Cr3+ near-infrared persistent phosphor[J]. Optics Letters, 41, 954-957(2016).
[17] Chen X Z, Li Y, Huang K et al. Persistent-luminescence phosphors: trap energy upconversion-like near-infrared to near-infrared light rejuvenateable persistent luminescence[J]. Advanced Materials, 33, 2170118(2021).
[18] Qiu X C, Zhu X J, Xu M et al. Hybrid nanoclusters for near-infrared to near-infrared upconverted persistent luminescence bioimaging[J]. ACS Applied Materials & Interfaces, 9, 32583-32590(2017).
[19] Li Z J, Huang L, Zhang Y W et al. Near-infrared light activated persistent luminescence nanoparticles via upconversion[J]. Nano Research, 10, 1840-1846(2017).
[20] Ueda J, Dorenbos P, Bos A J J et al. Control of electron transfer between Ce3+ and Cr3+ in the Y3Al5-xGaxO12 host via conduction band engineering[J]. Journal of Materials Chemistry C, 3, 5642-5651(2015).
[21] Long Z W, Zhou J H, Qiu J B et al. Thermal engineering of electron-trapping materials for “Smart-Write-In” optical data storage[J]. Chemical Engineering Journal, 420, 129788(2021).
[22] Zhang K X, Wang K X, Gao C Q. Design and thermal effect analysis of LD pumped Er, Yb∶glass slab multi-pass amplifier[J]. Acta Optica Sinica, 42, 0514001(2022).
[23] Tang X Y, Han Q, Song H L et al. Numerical investigation of the thermal effect on Yb-cavity-copumped Er/Yb codoped fiber amplifiers[J]. Applied Optics, 57, 1541-1547(2018).
[24] Ma J, Wu H, Qiu J B et al. NIR-excited all-inorganic perovskite quantum dots (CsPbBr3) for a white light-emitting device[J]. Journal of Materials Chemistry C, 7, 3751-3755(2019).
[25] Zhuang Y X, Wang L, Lv Y et al. Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials[J]. Advanced Functional Materials, 28, 1705769(2018).
[26] Lin S S, Lin H, Huang Q M et al. A photostimulated BaSi2O5∶Eu2+, Nd3+ phosphor-in-glass for erasable-rewritable optical storage medium[J]. Laser & Photonics Reviews, 13, 1900006(2019).
[27] Wang P J, Xu X H, Qiu J B et al. Effects of Er3+ doping on the long-persistent luminescence properties of Ba4(Si3O8)2∶Eu2+ phosphor[J]. Optical Materials, 36, 1826-1829(2014).
[28] Babu V R, Moorthy L R, Buddhudu S. Absorption spectrum of Nd3+∶LiNH4SO4 single crystals[J]. Materials Letters, 4, 99-101(1986).
[29] Liu W J, Zhang W J, Liu R X et al. Up-conversion of lanthanide ions and down-conversion defect luminescence in BaGdF5∶Yb, Er/Tm for application in anti-counterfeiting[J]. New Journal of Chemistry, 45, 17377-17383(2021).
[30] Chen W, Zhang Y, Li Q et al. Near-infrared afterglow luminescence of chlorin nanoparticles for ultrasensitive in vivo imaging[J]. Journal of the American Chemical Society, 144, 6719-6726(2022).
[31] Zhuang Y X, Chen D R, Xie R J. Persistent luminescent materials with deep traps for optical information storage[J]. Laser & Optoelectronics Progress, 58, 1516001(2021).
[32] van den Eeckhout K, Bos A J J, Poelman D et al. Revealing trap depth distributions in persistent phosphors[J]. Physical Review B, 87, 045126(2013).
[33] Ren B L, Yao X T, Xu X K et al. Recent progress of rare earth upconversion luminescent materials/quantum dots composite materials[J]. Journal of the Chinese Society of Rare Earths, 39, 827-839(2021).
[34] Huang J X, Gao Z M. Application on the luminescence characteristics of nanoaluminate rare earth long-lasting luminescent composite materials in the field of ethnic clothing[J]. Journal of Nanomaterials, 2022, 1-14(2022).
[35] Ouyang X, Xu Y, Feng Z W et al. Polychromatic and polarized multilevel optical data storage[J]. Nanoscale, 11, 2447-2452(2019).
[36] Wang B, Wang H W, Huang J H et al. Trap distribution and photo-stimulated luminescence in LaSrAl3O7∶Eu2+ long-lasting phosphors for optical data storage[J]. Journal of the American Ceramic Society, 103, 315-323(2020).
[37] Gao D L, Wang Z G, Pang Q et al. Trap-dependent optical/thermal stimulated luminescence of gallate phosphors charged by UV-visible-NIR light for multiplexed data storage[J]. Advanced Optical Materials, 11, 2300303(2023).
[38] Chen L, Wu Y, Huo H Y et al. Study on the fluorescence properties of micron-submicron-nano BaFBr∶Eu2+ phosphors[J]. New Journal of Chemistry, 44, 13118-13124(2020).
[39] van der Heggen D, Cooper D R, Tesson M et al. Optically stimulated nanodosimeters with high storage capacity[J]. Nanomaterials, 9, 1127(2019).
[40] Rao Z H, Cao M Y, Chen Z H et al. Understanding and effective tuning of red-to-green upconversion emission in Ho-based halide double perovskite microcrystals[J]. Advanced Functional Materials, 2311568(2023).
[41] Van der Heggen D, Joos J J, Feng A et al. Persistent luminescence in strontium aluminate: a roadmap to a brighter future[J]. Advanced Functional Materials, 32, 2208809(2022).
[42] Liao C, Wu H, Wu H J et al. Electron trapping optical storage using a single-wavelength light source for both information write-In and read-out[J]. Laser & Photonics Reviews, 17, 2300016(2023).
Get Citation
Copy Citation Text
Xiaojun Li, Xiaqing Jiang, Caiming Chen, Ruoxi Gao, Zhangwen Long, Jianbei Qiu. Photostimulated Information Storage Material for Novel Near-Infrared Writing Based on Thermal-Assisted Excitation (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0116005
Category: Materials
Received: Oct. 23, 2023
Accepted: Nov. 7, 2023
Published Online: Feb. 6, 2024
The Author Email: Zhangwen Long (LongZW@kust.edu.com), Jianbei Qiu (qiu@kust.edu.com)
CSTR:32186.14.LOP232340