Photonics Research, Volume. 7, Issue 3, 368(2019)
Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks
[17] H. A. Haus. Waves and Fields in Optoelectronics(1984).
[33] K. Kojima, B. Wang, U. Kamilov, T. Koike-Akino, K. Parsons. Acceleration of FDTD-based inverse design using a neural network approach. Integrated Photonics Research, Silicon and Nanophotonics, ITu1A.4(2017).
[35] M. H. Tahersima, K. Kojima, T. Koike-Akino, D. Jha, B. Wang, C. Lin, K. Parsons. Deep neural network inverse design of integrated nanophotonic devices(2018).
[37] I. Malkiel, A. Nagler, M. Mrejen, U. Arieli, L. Wolf, H. Suchowski. Deep learning for design and retrieval of nano-photonic structures(2017).
[41] Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, W. Cai. A generative model for inverse design of metamaterials(2018).
[42] B. Baker, O. Gupta, N. Naik, R. Raskar. Designing neural network architectures using reinforcement learning(2016).
[45] B. Zoph, Q. V. Le. Neural architecture search with reinforcement learning(2016).
[53] G. Fishman. Monte Carlo: Concepts, Algorithms, and Applications(2013).
[54] A. Devarakonda, M. Naumov, M. Garland. AdaBatch: adaptive batch sizes for training deep neural networks(2017).
[57] G. C. Cawley, N. L. Talbot. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res., 11, 2079-2107(2010).
[59] A. Chipperfield, P. Fleming. The MATLAB genetic algorithm toolbox. IEEE Colloquium on Applied Control Techniques Using MATLAB(1995).
Get Citation
Copy Citation Text
Tian Zhang, Jia Wang, Qi Liu, Jinzan Zhou, Jian Dai, Xu Han, Yue Zhou, Kun Xu, "Efficient spectrum prediction and inverse design for plasmonic waveguide systems based on artificial neural networks," Photonics Res. 7, 368 (2019)
Category: Plasmonics and Metamaterials
Received: Nov. 9, 2018
Accepted: Jan. 11, 2019
Published Online: Mar. 7, 2019
The Author Email: Kun Xu (xukun@bupt.edu.cn)