Chinese Journal of Lasers, Volume. 49, Issue 17, 1713003(2022)

Multigroove-Type Ultraviolet Absorber Based on Bi1.5Sb0.5Te1.8Se1.2 Material

Jing Zhang1, Wenrui Xue1、*, Chen Zhang1, Yuting Chen1, and Changyong Li2,3
Author Affiliations
  • 1College of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, Shanxi, China
  • 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, Shanxi, China
  • 3Collaborative Innovation Center of Extreme Optical, Shanxi University, Taiyuan 030006, Shanxi, China
  • show less
    References(28)

    [1] Lim D, Lim S. Ultrawideband electromagnetic absorber using sandwiched broadband metasurfaces[J]. IEEE Antennas and Wireless Propagation Letters, 18, 1887-1891(2019).

    [2] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [3] Wu P H, Chen Z Q, Xu D Y et al. A narrow dual-band monolayer unpatterned graphene-based perfect absorber with critical coupling in the near infrared[J]. Micromachines, 11, 58(2020).

    [4] Yuan S, Yang R C, Xu J P et al. Photoexcited switchable single-/ dual-band terahertz metamaterial absorber[J]. Materials Research Express, 6, 075807(2019).

    [5] Li W, Valentine J. Metamaterial perfect absorber based hot electron photodetection[J]. Nano Letters, 14, 3510-3514(2014).

    [6] Liu Y, Chen Y T, Li J C et al. Study of energy absorption on solar cell using metamaterials[J]. Solar Energy, 86, 1586-1599(2012).

    [7] Liu T J, Takahara J. Ultrabroadband absorber based on single-sized embedded metal-dielectric-metal structures and application of radiative cooling[J]. Optics Express, 25, A612-A627(2017).

    [8] Ghobadi T G U, Ghobadi A, Ozbay E et al. Strategies for plasmonic hot-electron-driven photoelectrochemical water splitting[J]. ChemPhotoChem, 2, 161-182(2018).

    [9] Hoa N T Q, Tung P D, Lam P H et al. Numerical study of an ultrabroadband, wide-angle, polarization-insensitivity metamaterial absorber in the visible region[J]. Journal of Electronic Materials, 47, 2634-2639(2018).

    [10] Liu K, Liu Y Y, Deng F et al. Long-wave infrared ultra-broadband perfect absorber with embedded structure[J]. Acta Optica Sinica, 41, 2423002(2021).

    [11] Li H, Yu J, Chen Z. Broadband tunable terahertz absorber based on hybrid graphene-vanadium dioxide metamaterials[J]. Chinese Journal of Lasers, 47, 0903001(2020).

    [12] Yu Y J, Sun P Y, Wang Y F et al. A new design for an ultra-wideband microwave metamaterial absorber[J]. Journal of Physics D, 54, 295003(2021).

    [13] Dang V Q, Trung T Q, Kim D I et al. Ultrahigh responsivity in graphene-ZnO nanorod hybrid UV photodetector[J]. Small, 11, 3054-3065(2015).

    [14] Honda M, Kumamoto Y, Taguchi A et al. Plasmon-enhanced UV photocatalysis[J]. Applied Physics Letters, 104, 061108(2014).

    [15] Wu T, Lai J J, Wang S W et al. UV-visible broadband wide-angle polarization-insensitive absorber based on metal groove structures with multiple depths[J]. Applied Optics, 56, 5844-5848(2017).

    [16] Huang Y J, Liu L, Pu M B et al. A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum[J]. Nanoscale, 10, 8298-8303(2018).

    [17] Matsumori K, Fujimura R. Broadband light absorption of an Al semishell-MIM nanostrucure in the UV to near-infrared regions[J]. Optics Letters, 43, 2981-2984(2018).

    [18] Qi B X, Zhao Y R, Niu T M et al. Ultra-broadband metamaterial absorber based on all-metal nanostructures[J]. Journal of Physics D, 52, 425304(2019).

    [19] Jiang X Y, Wang T, Zhong Q F et al. A near-ideal solar selective absorber with strong broadband optical absorption from UV to NIR[J]. Nanotechnology, 31, 315202(2020).

    [20] Ma W Y, Yu S L, Zhao T G. Numerical study of an ultra-broadband perfect absorber from ultraviolet to near-infrared based on metal quadruple staircase structure[J]. Optics Communications, 493, 127037(2021).

    [21] Sun D W, Li C H, Yi L J et al. High absorption broadband solar energy absorber based on two-dimensional photonic crystal[J]. Acta Optica Sinica, 41, 0516002(2021).

    [22] Ou J Y, So J K, Adamo G et al. Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2[J]. Nature Communications, 5, 5139(2014).

    [23] Dubrovkin A M, Adamo G, Yin J et al. Visible range plasmonic modes on topological insulator nanostructures[J]. Advanced Optical Materials, 5, 1600768(2017).

    [24] Tang C S, Xia B, Zou X Q et al. Terahertz conductivity of topological surface states in Bi1.5Sb0.5Te1.8Se1.2[J]. Scientific Reports, 3, 3513(2013).

    [25] Wan M L, Ji P F, Wang R R et al. Ultraviolet wavefront manipulation using topological insulator metasurfaces based on geometric phase[J]. Optics Communications, 487, 126812(2021).

    [26] Yuan L M, Liao J M, Ren A B et al. Ultra-narrow-band infrared absorbers based on surface plasmon resonance[J]. Plasmonics, 16, 1165-1174(2021).

    [27] Wang H Q, Yang J B, Wu W J et al. Dual-band perfect absorbers based on the magnetic resonance and the cavity resonance[J]. Proceedings of SPIE, 10256, 1025633(2017).

    [28] Palik E D[M]. Handbook of optical constants of solids, 759(1985).

    Tools

    Get Citation

    Copy Citation Text

    Jing Zhang, Wenrui Xue, Chen Zhang, Yuting Chen, Changyong Li. Multigroove-Type Ultraviolet Absorber Based on Bi1.5Sb0.5Te1.8Se1.2 Material[J]. Chinese Journal of Lasers, 2022, 49(17): 1713003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: micro and nano optics

    Received: Dec. 31, 2021

    Accepted: Mar. 30, 2022

    Published Online: Jul. 28, 2022

    The Author Email: Xue Wenrui (wrxue@sxu.edu.cn)

    DOI:10.3788/CJL202249.1713003

    Topics