Laser & Optoelectronics Progress, Volume. 55, Issue 12, 121001(2018)

Single Image Super-Resolution Based on Convolutional Neural Network

Ziteng Shi, Zhiren Wang, Rui Wang, and Fuquan Ren*
Author Affiliations
  • College of Science, Yanshan University, Qinhuangdao, Hebei 066004, China
  • show less
    Figures & Tables(13)
    SRCNN algorithm framework
    Proposed algorithm framework
    Function schematic. (a) ReLU; (b) e-ReLU
    Graph of train loss in the proposed method with the increase of iterations in the training process
    Comparison of the reconstruction of the baby_GT in Set 5. (a) Original image; (b) BI/33.91 dB; (c) ScSR/34.29 dB; (d) SRCNN/34.83 dB; (e) SRCNN-Ex/34.91dB; (f) proposed method/35.04 dB
    Comparison of the reconstruction of the butterfly_GT in Set 5. (a) Original image; (b) BI/24.04 dB; (c) ScSR/25.58 dB; (d) SRCNN/25.00 dB; (e) SRCNN-Ex/25.58 dB; (f) proposed method/27.91 dB
    Comparison of the reconstruction of the lenna in Set 14. (a) Original image; (b) BI/31.68 dB; (c) ScSR/32.64 dB; (d) SRCNN/32.53 dB; (e) SRCNN-Ex/32.78 dB; (f) proposed method/33.57 dB
    Comparison of the reconstruction of the pepper in Set 14. (a) Original image; (b) BI/32.38 dB; (c) ScSR/33.32 dB; (d) SRCNN/32.08 dB; (e) SRCNN-Ex/33.30 dB; (f) proposed method/34.57 dB
    Change graph of the average PSNR value for proposed algorithm in the Set 5 test set, with the number of iterations
    • Table 1. Parameter settings for each layer

      View table

      Table 1. Parameter settings for each layer

      NameSizeNumberStridePadding
      Conv15×56410
      Conv23×33210
      Deconv9×9134
    • Table 2. PSNR and SSIM values on Set 5 test set

      View table

      Table 2. PSNR and SSIM values on Set 5 test set

      ImageBIScSRSRCNNSRCNN-ExProposed method
      PSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIM
      Baby33.910.9034.290.9234.830.9234.910.9235.040.92
      Bird32.570.9334.110.9233.770.9434.030.9435.460.95
      Butterfly24.040.8225.580.8225.000.8325.580.8427.910.91
      Head32.880.8033.170.8033.420.8233.420.8233.670.83
      Women28.560.8929.940.9129.600.9129.910.9131.220.93
      Average30.390.8731.420.8731.320.8831.570.8932.660.91
    • Table 3. PSNR and SSIM values on Set 14 test set

      View table

      Table 3. PSNR and SSIM values on Set 14 test set

      ImageBIScSRSRCNNSRCNN-ExProposed method
      PSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIMPSNR /dBSSIM
      Baboon23.210.5423.500.5923.520.6023.540.6023.620.61
      Barbara26.250.7526.390.7526.760.7826.840.7826.570.78
      Bridge24.400.6524.800.7024.890.7024.950.7025.140.71
      Coastguard26.550.6127.000.6527.000.6627.080.6627.120.66
      Comic23.120.7023.900.7623.770.7523.870.7524.530.79
      Face32.820.8033.100.8133.380.8233.400.8233.710.83
      Flowers27.230.8028.250.8328.060.8328.270.8329.220.85
      Foreman31.160.9132.040.9132.090.9132.010.9133.650.94
      Lenna31.680.8632.640.8732.530.8732.780.8833.570.88
      Man27.010.7527.760.7827.560.7827.720.7828.330.80
      Monarch29.430.9230.710.9330.400.9330.870.9332.780.95
      Pepper32.380.8733.320.8732.080.8833.300.8834.570.89
      Ppt323.710.8724.980.8724.340.8825.020.8926.240.92
      Zebra26.630.8027.950.8227.740.8428.370.8429.110.85
    • Table 4. Comparison of training times

      View table

      Table 4. Comparison of training times

      Method1000 times iteration105 times iteration2×105 times iteration8×108 times iteration
      SRCNN477381600000
      SRCNN-Ex13921113600000
      Proposed method1411410028200
    Tools

    Get Citation

    Copy Citation Text

    Ziteng Shi, Zhiren Wang, Rui Wang, Fuquan Ren. Single Image Super-Resolution Based on Convolutional Neural Network[J]. Laser & Optoelectronics Progress, 2018, 55(12): 121001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: May. 7, 2018

    Accepted: Jun. 8, 2018

    Published Online: Aug. 1, 2019

    The Author Email: Fuquan Ren (renfu_quan@ysu.edu.cn)

    DOI:10.3788/LOP55.121001

    Topics