Laser & Optoelectronics Progress, Volume. 60, Issue 10, 1028010(2023)

Improved Algorithm for Super-Resolution Reconstruction of Remote-Sensing Images Based on Generative Adversarial Networks

Qiang Li, Xiyuan Wang*, and Jiawei He
Author Affiliations
  • College of Physics and Electronic Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
  • show less
    Figures & Tables(14)
    Improved SR reconstruction network. (a) Structure of generating network; (b) structure of adversarial network
    Structure of RRDB
    Structure of RRFDB
    Structure of RFB
    PSNR values of different convolution combinations
    Image reconstruction of different algorithms on Kaggle test dataset. (a) HR; (b) Bicubic; (c) SRGAN; (d) EDSR; (e) ESRGAN; (f) proposed algorithm
    Image reconstruction of different algorithms on WHU-RS19 dataset. (a) HR; (b) Bicubic; (c) SRGAN; (d) EDSR; (e) ESRGAN; (f) proposed algorithm
    Image reconstruction of different algorithms on AID dataset. (a) HR; (b) Bicubic; (c) SRGAN; (d) EDSR; (e) ESRGAN; (f) proposed algorithm
    • Table 1. Performance of algorithm on Kaggle test dataset under different module settings

      View table

      Table 1. Performance of algorithm on Kaggle test dataset under different module settings

      ModulePSNR /dBSSIMFSIM
      GAN+RFDB(16)29.830.8620.975
      GAN+RRDB(16)30.490.8840.990
      GAN+RRDB(16)+RFDB(4)30.920.8920.992
      GAN+RRDB(16)+RFDB(6)31.670.8970.993
      GAN+RRDB(16)+RFDB(8)31.680.8950.993
    • Table 2. Performance of algorithm on Kaggle test datasets with different loss function settings

      View table

      Table 2. Performance of algorithm on Kaggle test datasets with different loss function settings

      ModulePSNR /dBSSIMFSIM
      SRGAN original loss29.710.8440.930
      Lcont30.630.8740.931
      Lcont+Lpercep31.210.8830.931
      Lcont+Lpercep+Ladv31.420.8860.964
      Lcont+Lpercep+Ladv+LTV31.670.8970.993
    • Table 3. Average PSNR of different algorithms on Kaggle, WHU-RS19, and AID

      View table

      Table 3. Average PSNR of different algorithms on Kaggle, WHU-RS19, and AID

      DatasetScaleBicubicEDSRSRGANESRGANProposed algorithm
      Kaggle229.0137.5136.9137.7637.99
      326.0333.3132.5533.7634.10
      424.3430.7130.1631.2331.67
      WHU-RS19225.5927.8627.1528.7529.06
      324.5526.8325.8427.8028.08
      422.9624.7423.9425.7126.08
      AID225.4329.1828.3729.4429.55
      322.8225.9125.0226.3326.52
      421.3423.8923.1824.3524.63
    • Table 4. Average SSIM of different algorithms on Kaggle, WHU-RS19, and AID

      View table

      Table 4. Average SSIM of different algorithms on Kaggle, WHU-RS19, and AID

      DatasetScaleBicubicEDSRSRGANESRGANProposed algorithm
      Kaggle20.8560.9700.9600.9620.972
      30.7940.9270.9060.9180.935
      40.7370.8740.8480.8810.897
      WHU-RS1920.8000.9420.8440.8340.854
      30.7420.9000.7970.7960.822
      40.6890.8480.7460.7640.788
      AID20.7120.9780.8020.7900.798
      30.6600.9350.7570.7540.767
      40.6130.8810.7080.7240.736
    • Table 5. Average FSIM of different algorithms on Kaggle, WHU-RS19, and AID

      View table

      Table 5. Average FSIM of different algorithms on Kaggle, WHU-RS19, and AID

      DatasetScaleBicubicEDSRSRGANESRGANProposed algorithm
      Kaggle20.8610.9930.9940.9980.999
      30.8500.9900.9900.9930.997
      40.8340.9830.9810.9860.993
      WHU-RS1920.8320.9100.9100.9140.915
      30.8220.9070.9060.9090.912
      40.8060.9010.8980.9030.908
      AID20.8240.9030.9040.9080.906
      30.8140.9000.9000.9030.903
      40.7980.8940.8920.8970.899
    • Table 6. Running time of different algorithms on Kaggle, WHU-RS19, and AID

      View table

      Table 6. Running time of different algorithms on Kaggle, WHU-RS19, and AID

      AlgorithmKaggleWHU-RS19AID
      Bicubic128.60740.32258.169
      EDSR224.03681.723119.134
      SRGAN283.54789.812128.725
      ESRGAN271.07784.853121.321
      Proposed algorithm280.32487.465125.364
    Tools

    Get Citation

    Copy Citation Text

    Qiang Li, Xiyuan Wang, Jiawei He. Improved Algorithm for Super-Resolution Reconstruction of Remote-Sensing Images Based on Generative Adversarial Networks[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1028010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Nov. 24, 2021

    Accepted: Mar. 8, 2022

    Published Online: May. 23, 2023

    The Author Email: Xiyuan Wang (wangxiy@nxu.edu.cn)

    DOI:10.3788/LOP213046

    Topics