Journal of Quantum Optics, Volume. 28, Issue 4, 377(2022)
Selection Rules of Energy Level Transition for Mesoscopic LC Circuits with Complex Couplings
[1] [1] VOURDAS A. Mesoscopic Josephson junctions in the presence of non-classical electromagnetic fields[J]. Phys Rev B, 1994, 49:12040. DOI: /10.1103/PhysRevB.49.12040.
[2] [2] FAN H Y, PAN X Y. Quantization and squeezed state of two L-C circuits with mutual-inductance[J]. Chin Phys Lett, 1998, 15:625-627. DOI: 10.1088/0256-307X/15/9/001.
[3] [3] SHAO B, ZOU J, LI Q S. Geometric phase in a mesoscopic Josephson junction with classical driving source[J]. Phys Rev B, 1999, 60:9714. DOI: 10.1103/PhysRevB.60.9714.
[5] [5] VANDERSYPEN L M K, STEFFEN M, BREYTA G, et al. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance[J]. Nature, 2001, 414:883-887. DOI: 10.1038/414883a.
[6] [6] JI Y H. Study on quantum entanglement between mesoscopic circuit and environment at coherent state[J]. Commun Theor Phys, 2008, 50(4):897-902. DOI: 10.1088/0253-6102/50/4/21.
[7] [7] LOUISELL W H. Quantum statistical properties of radiation[M]. New York: John Wiley & Sons, 1973:231.
[8] [8] ZHANG Z T, YU Y. Coupling mechanism between microscopic two-level system and superconducting qubits[J]. Phys Rev A, 2011, 84:064301. DOI: 10.1103/PhysRevA.84.064301.
[9] [9] WENNER J, YIN Y, LUCERO E, BARENDS R, et al. Excitation of superconducting qubits from hot nonequilibrium quasiparticles[J]. Phys Rev Lett, 2013, 110:150502. DOI: 10.1103/PhysRevLett.110.150502.
[10] [10] ZHANG Z T, YU Y. Processing quantum information in a hybrid topological qubit and superconducting flux qubit system[J]. Phys Rev A, 2013, 87:032327. DOI: 10.1103/PhysRevA.87.032327.
[11] [11] ZHANG Z T, MEI F, MENG X G, et al. Effects of decoherence on diabatic errors in Majorana braiding[J]. Phys Rev A, 2019, 100:012324. DOI: 10.1103/PhysRevA.100.012324.
[12] [12] YAN F, KRANTZ P, SUNG Y, et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates[J]. Phys Rev Applied, 2018, 10:054062. DOI: 10.1103/PhysRevApplied.10.054062.
[14] [14] ZHAO P, XU P, LAN D, et al. High-contrast ZZ interaction using superconducting qubits with opposite-sign anharmonicity[J]. Phys Rev Lett, 2020, 125:200503. DOI: 10.1103/PhysRevLett.125.200503.
[15] [15] LIANG B L, WANG J S, MENG X G, et al. Quantization of double enhanced charge phase-slip qubits and quantum entanglement control[J]. Int J Mod Phys B, 2021, 35(3):2150041. DOI: 10.1142/S0217979221500417.
[17] [17] DIRAC P A M. The principles of quantum mechanics[M]. London: Oxford Univ. Press, 1958:159.
[18] [18] FAN H Y, LI C. Invariant eigen-operator of the square of Schrdinger operator for deriving energy-level gap[J]. Phys Lett A, 2004, 321(2):75-78. DOI: 10.1016/j.physleta.2003.11.059.
[19] [19] FAN H Y, CHEN J H, YUAN H C. Applying invariant eigen-operator method to deriving normal coordinates of general classical Hamiltonian[J]. Chin Phys B, 2010, 19(9):090312. DOI: 10.1088/1674-1056/19/9/090312.
[20] [20] FAN H Y, WU H, XU X F. Vibrational spectrum for the linear lattice chain gained by virtue of the ‘Invariant eigen-operator’ method[J]. Int J Mod Phys B, 2005, 19(27):4073-4080. DOI: 10.1142/S0217979205032590.
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Selection Rules of Energy Level Transition for Mesoscopic LC Circuits with Complex Couplings[J]. Journal of Quantum Optics, 2022, 28(4): 377
Category:
Received: May. 23, 2022
Accepted: --
Published Online: Mar. 5, 2023
The Author Email: (blliang@lcu.edu.cn)