Acta Optica Sinica, Volume. 36, Issue 12, 1227002(2016)
Analysis of Quantum Radar Cross Section of Curved Surface Target
[1] [1] Lu Tian′an, Li Hongping. Phase error compensation in airborne synthetic aperture lidar data processing[J]. Acta Optica Sinica, 2015, 35(8): 0801002.
[2] [2] Smith III J F. Quantum entangled radar theory and a correction method for the effects of the atmosphere on entanglement[C]. SPIE, 2009, 7342: 73420A.
[3] [3] Jiang K, Lee H, Gerry C C, et al. Super-resolving quantum radar: coherent-state sources with homodyne detection suffice to beat the diffraction limit[J]. Journal of Applied Physics, 2013, 114(19): 193102.
[4] [4] Dutton Z, Shapiro J H, Guha S. LADAR resolution improvement using receivers enhanced with squeezed-vacuum injection and phase-sensitive amplification[J]. Journal of the Optical Society of America B, 2010, 27(6): A63-A72.
[5] [5] Wasilousky P A, Smith K H, Glasser R, et al. Quantum enhancement of a coherent LADAR receiver using phase-sensitive amplification[C]. SPIE, 2011, 8163: 816305.
[6] [6] Santivanez C A, Guha S, Dutton Z, et al. Quantum enhanced lidar resolution with multi-spatial-mode phase sensitive amplification[C]. SPIE, 2011, 8163: 81630Z.
[7] [7] Lanzagorta M. Quantum radar[M]. San Rafael: Morgan & Claypool, 2011: 77-90.
[8] [8] Lloyd S. Enhanced sensitivity of photodetection via quantum illumination[J]. Science, 2008, 321(5895): 1463-1465.
[9] [9] Shapiro J H, Lloyd S. Quantum illumination versus coherent-state target detection[J]. New Journal of Physics, 2009, 11(6): 063045.
[10] [10] Tan S H, Erkmen B I, Giovannetti V, et al. Quantum illumination with Gaussian states[J]. Physical Review Letters, 2008, 101(25): 253601.
[11] [11] Guha S, Erkmen B I. Gaussian-state quantum-illumination receivers for target detection[J]. Physical Review A, 2009, 80(5): 052310.
[12] [12] Lanzagorta M. Quantum radar cross section[C]. SPIE, 2010, 7727: 77270K.
[13] [13] Liu K, Xiao H T, Fan H Q. Analysis and simulation of quantum radar cross section[J]. Chinese Physics Letters, 2014, 31(3): 034202.
[14] [14] Liu K, Xiao H T, Fan H Q, et al. Analysis of quantum radar cross section and its influence on target detection performance[J]. IEEE Photonics Technology Letters, 2014, 26(11): 1146-1149.
[15] [15] Xu Shilong, Hu Yihua, Zhao Nanxiang, et al. Impact of metal target′s atom lattice structure on its quantum radar cross-section[J]. Acta Physica Sinica, 2015, 64(15): 154203.
[16] [16] Zhu Yanju, Jiang Yuesong, Zhang Chonghui, et al. Fast computation of electromagnetic scattering characteristics from conducting targets using modified-physical optics and graphical electromagnetic computing[J]. Acta Physica Sinica, 2014, 63(16): 164202.
[17] [17] Muthukrishnan A, Scully M O, Zubairy M S. The photon wave function[C]. SPIE, 2005, 5866: 287-292.
Get Citation
Copy Citation Text
Chen Kun, Chen Shuxin, Wu Dewei, Wang Xi, Shi Mi. Analysis of Quantum Radar Cross Section of Curved Surface Target[J]. Acta Optica Sinica, 2016, 36(12): 1227002
Category: Quantum Optics
Received: May. 10, 2016
Accepted: --
Published Online: May. 9, 2020
The Author Email: Kun Chen (kunchen365@sina.com)