Infrared and Laser Engineering, Volume. 51, Issue 3, 20210969(2022)

Mid-infrared optical frequency combs: Progress and applications (Invited)

Junting Du, Bing Chang, Zhaoyu Li, Hao Zhang, Chenye Qin, Yong Geng, Teng Tan*, Heng Zhou*, and Baicheng Yao*
Author Affiliations
  • Key Laboratory of Optical Fiber Sensing and Communication (MOE), University of Electronic Science and Technology of China, Chengdu 611731, China
  • show less
    References(97)

    [1] Cundiff S T, Ye J. Colloquium: Femtosecond optical frequency combs[J]. Reviews of Modern Physics, 75, 325-342(2003).

    [2] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications[J]. Communica-tions Physics, 2, 153(2019).

    [3] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs[J]. Nature Photonics, 6, 440-449(2012).

    [4] Qin Z, Hai T, Xie G, et al. Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5 μm wavelength[J]. Optics Express, 26, 8224(2018).

    [5] Wei C, Lyu Y, Shi H, et al. Mid-infrared Q-switched and mode-locked fiber lasers at 2.87 μm based on carbon nanotube[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-6(2019).

    [6] Cruz F C, Maser D L, Johnson T, et al. Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy[J]. Optics Express, 23, 26814(2015).

    [7] Soboń G, Martynkien T, Mergo P, et al. High-power frequency comb source tunable from 2.7 to 4.2 μm based on difference frequency generation pumped by an Yb-doped fiber laser[J]. Optics Letters, 42, 1748(2017).

    [8] Ycas G, Giorgetta F R, Baumann E, et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm[J]. Nature Photonics, 12, 202-208(2018).

    [9] Bao C, Yuan Z, Wu L, et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy[J]. Nature Communi-cations, 12, 6573(2021).

    [10] Jin Y, Cristescu S M, Harren F J M, et al. Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy[J]. Applied Physics B, 119, 65-74(2015).

    [11] Muraviev A V, Smolski V O, Loparo Z E, et al. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs[J]. Nature Photonics, 12, 209-214(2018).

    [12] Grassani D, Tagkoudi E, Guo H, et al. Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum[J]. Nature Communications, 10, 1553(2019).

    [13] Guo H, Weng W, Liu J, et al. Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy[J]. Optica, 7, 1181(2020).

    [14] Borri S, Insero G, Santambrogio G, et al. High-precision molecular spectroscopy in the mid-infrared using quantum cascade lasers[J]. Applied Physics B, 125, 18(2019).

    [15] Meng B, Singleton M, Shahmohammadi M, et al. Mid-infrared frequency comb from a ring quantum cascade laser[J]. Optica, 7, 162(2020).

    [16] Wang C Y, Herr T, Del’haye P, et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators[J]. Nature Communications, 4, 1345(2013).

    [17] Yu M, Okawachi Y, Griffith A G, et al. Silicon-chip-based mid-infrared dual-comb spectroscopy[J]. Nature Communications, 9, 1869(2018).

    [18] Haus H A. Mode-locking of lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1173-1185(2000).

    [19] Chen G, Li W, Wang G, et al. Generation of coexisting high-energy pulses in a mode-locked all-fiber laser with a nonlinear multimodal interference technique[J]. Photonics Research, 7, 187(2019).

    [20] Qin C, Jia K, Li Q, et al. Electrically controllable laser frequency combs in graphene-fibre microresonators[J]. Light: Science & Applications, 9, 185(2020).

    [21] Kivisto S, Okhotnikov O G. 600-fs mode-locked Tm–Ho-doped fiber laser synchronized to optical clock with optically driven semiconductor saturable absorber[J]. IEEE Photonics Technology Letters, 23, 477-479(2011).

    [22] Wang Q, Geng J, Luo T, et al. Mode-locked 2 μm laser with highly thulium-doped silicate fiber[J]. Optics Letters, 34, 3616(2009).

    [23] Kivisto S, Hakulinen T, Guina M, et al. Tunable Raman soliton source using mode-locked Tm–Ho fiber laser[J]. IEEE Photonics Technology Letters, 19, 934-936(2007).

    [24] Antipov S, Hudson D D, Fuerbach A, et al. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window[J]. Optica, 3, 1373(2016).

    [25] Woodward R I, Majewski M R, Jackson S D. Mode-locked dysprosium fiber laser: Picosecond pulse generation from 2.97 to 3.30 μm[J]. APL Photonics, 3, 116106(2018).

    [26] Li J, Hudson D D, Liu Y, et al. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Optics Letters, 37, 3747(2012).

    [27] Ma J, Qin Z, Xie G, et al. Review of mid-infrared mode-locked laser sources in the 2.0 μm–3.5 μm spectral region[J]. Applied Physics Reviews, 6, 021317(2019).

    [28] Wang Y, Jobin F, Duval S, et al. Ultrafast Dy3+: fluoride fiber laser beyond 3 μm[J]. Optics Letters, 44, 395-398(2019).

    [29] Mirov S B, Fedorov V V, Martyshkin D V, et al. Progress in mid-IR Cr2+ and Fe2+ doped Ⅱ-Ⅵ materials and lasers [Invited][J]. Optical Materials Express, 1, 898(2011).

    [30] Nagl N, Gröbmeyer S, Pervak V, et al. Directly diode-pumped, Kerr-lens mode-locked, few-cycle Cr: ZnSe oscillator[J]. Optics Express, 27, 24445(2019).

    [31] Pushkin A V, Migal E A, Tokita S, et al. Femtosecond graphene mode-locked Fe: ZnSe laser at 4.4 µm[J]. Optics Letters, 45, 738(2020).

    [32] Frolov M P, Gordienko V M, Korostelin Y V, et al. Fe 2+ -doped CdSe single crystal: Growth, spectroscopic and laser properties, potential use as a 6 µm broadband amplifier[J]. Laser Physics Letters, 14, 025001(2017).

    [33] Frolov M P, Korostelin Y V, Kozlovsky V I, et al. 2 mJ room temperature Fe: CdTe laser tunable from 5.1 to 6.3 μm[J]. Optics Letters, 44, 5453(2019).

    [34] Silva de Oliveira V, Ruehl A, Masłowski P, et al. Intensity noise optimization of a mid-infrared frequency comb difference-frequency generation source[J]. Optics Letters, 45, 1914(2020).

    [35] Foreman S M, Jones D J, Ye J. Flexible and rapidly configurable femtosecond pulse generation in the mid-IR[J]. Optics Letters, 28, 370(2003).

    [36] He J, Li Y. Design of on-chip mid-IR frequency comb with ultra-low power pump in near-IR[J]. Optics Express, 28, 30771(2020).

    [37] Lu J, Surya J B, Liu X, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W[J]. Optica, 6, 1455(2019).

    [38] Chang L, Li Y, Volet N, et al. Thin film wavelength converters for photonic integrated circuits[J]. Optica, 3, 531(2016).

    [39] Yan M, Luo P L, Iwakuni K, et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators[J]. Light: Science & Applications, 6, 1-8(2017).

    [40] Lind A J, Kowligy A, Timmers H, et al. Mid-infrared frequency comb generation and spectroscopy with few-cycle pulses and χ(2) nonlinear optics[J]. Physical Review Letters, 124, 133904(2020).

    [41] Reid D T, Gale B J S, Sun J. Frequency comb generation and carrier-envelope phase control in femtosecond optical parametric oscillators[J]. Laser Physics, 18, 87-103(2008).

    [42] Iwakuni K, Porat G, Bui T Q, et al. Phase-stabilized 100 mW frequency comb near 10 μm[J]. Applied Physics B, 124, 128(2018).

    [43] Adler F, Cossel K C, Thorpe M J, et al. Phase-stabilized, 15 W frequency comb at 2.8–4.8 μm[J]. Optics Letters, 34, 1330(2009).

    [44] Leindecker N, Marandi A, Byer R L, et al. Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser[J]. Optics Express, 20, 7046(2012).

    [45] Roiz M, Kumar K, Karhu J, et al. Simple method for mid-infrared optical frequency comb generation with dynamic offset frequency tuning[J]. APL Photonics, 6, 026103(2021).

    [46] Erny C, Moutzouris K, Biegert J, et al. Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 μm from a compact fiber source[J]. Optics Letters, 32, 1138(2007).

    [47] Maidment L, Schunemann P G, Reid D T. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator[J]. Optics Letters, 41, 4261(2016).

    [48] Vainio M, Karhu J. Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy[J]. Optics Express, 25, 4190(2017).

    [49] [49] Gale B J S, Sun J H, Reid D T. Composite frequency comb spanning 0.42.4 μm from a femtosecond Ti: Sapphire laser synchronously pumped optical parametric oscillat[C]2007 European Conference on Lasers ElectroOptics the International Quantum Electronics Conference, 2007.

    [50] Alfano R R, Shapiro S L. Emission in the region 4000 to 7000 Å via four-photon coupling in glass[J]. Physical Review Letters, 24, 584(1970).

    [51] Lesko D M B, Timmers H, Xing S, et al. A six-octave optical frequency comb from a scalable few-cycle erbium fibre laser[J]. Nature Photonics, 15, 281-286(2021).

    [52] Yuan J, Kang Z, Li F, et al. Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide[J]. Journal of Lightwave Technology, IEEE, 35, 2994-3002(2017).

    [53] Kowligy A S, Lind A, Hickstein D D, et al. Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides[J]. Optics Letters, 43, 1678(2018).

    [54] Guo H, Herkommer C, Billat A, et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides[J]. Nature Photonics, 12, 330-335(2018).

    [55] Faist J, Villares G, Scalari G, et al. Quantum cascade laser frequency combs[J]. Nanophotonics, 5, 272-291(2016).

    [56] Tatham M C, Ryan J F, Foxon C T. Time-resolved Raman measurements of intersubband relaxation in GaAs quantum wells[J]. Physical Review Letters, 63, 1637-1640(1989).

    [57] Wang C Y, Kuznetsova L, Gkortsas V M, et al. Mode-locked pulses from mid-infrared quantum cascade lasers[J]. Optics Express, 17, 12929(2009).

    [58] Hugi A, Villares G, Blaser S, et al. Mid-infrared frequency comb based on a quantum cascade laser[J]. Nature, 492, 229-233(2012).

    [59] Hillbrand J, Andrews A M, Detz H, et al. Coherent injection locking of quantum cascade laser frequency combs[J]. Nature Photonics, 13, 101-104(2019).

    [60] Consolino L, Nafa M, Cappelli F, et al. Fully phase-stabilized quantum cascade laser frequency comb[J]. Nature Communications, 10, 2938(2019).

    [61] Villares G, Faist J. Quantum cascade laser combs: effects of modulation and dispersion[J]. Optics Express, 23, 1651(2015).

    [62] Henry N, Burghoff D, Hu Q, et al. Temporal characteristics of quantum cascade laser frequency modulated combs in long wave infrared and THz regions[J]. Optics Express, 26, 14201(2018).

    [63] Opačak N, Schwarz B. Theory of frequency-modulated combs in lasers with spatial hole burning, dispersion, and Kerr nonlinearity[J]. Physical Review Letters, 123, 1-5(2019).

    [64] Piccardo M, Schwarz B, Kazakov D, et al. Frequency combs induced by phase turbulence[J]. Nature, 582, 360-364(2020).

    [65] [65] Komagata K, Shehzad A, Hamrouni M, et al. Allinfrared stabilized quantum cade laser frequency comb with 30kHz frequency stability at 7.7 μm[C]CLEO: Science Innovations 2021: STu1H.3.

    [66] Zhou H, Geng Y, Cui W, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities[J]. Light: Science & Applications, 8, 50(2019).

    [67] Wang W, Chu S T, Little B E, et al. Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing[J]. Scientific Reports, 6, 28501(2016).

    [68] Lu Z, Chen H J, Wang W, et al. Synthesized soliton crystals[J]. Nature Communications, 12, 3179(2021).

    [69] Del’haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 450, 1214-1217(2007).

    [70] Herr T, Hartinger K, Riemensberger J, et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators[J]. Nature Photonics, 6, 480-487(2012).

    [71] Zhang X, Zhao Y. Research progress of microresonator-based optical frequency combs[J]. Acta Optica Sinica, 41, 0823014(2021).

    [72] Yao B, Liu Y, Huang S, et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures[J]. Nature Photon, 12, 22-28(2018).

    [73] Del’haye P, Herr T, Gavartin E, et al. Octave spanning tunable frequency comb from a microresonator[J]. Physical Review Letters, 107, 063901(2011).

    [74] Chen H J, Ji Q X, Wang H, et al. Chaos-assisted two-octave-spanning microcombs[J]. Nature Communications, 11, 2336(2020).

    [75] Yu M, Okawachi Y, Griffith A G, et al. Mode-locked mid-infrared frequency combs in a silicon microresonator[J]. Optica, 3, 854(2016).

    [76] Xuan Y, Liu Y, Varghese L T, et al. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation[J]. Optica, 3, 1171(2016).

    [77] Luke K, Okawachi Y, Lamont M R E, et al. Broadband mid-infrared frequency comb generation in a Si(3)N(4) microresonator[J]. Optics Letters, 40, 4823(2015).

    [78] Guo Y, Wang J, Han Z, et al. Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator[J]. Nanophotonics, 7, 1461-1467(2018).

    [79] Jiang S, Guo C, Fu H, et al. Mid-infrared Raman lasers and Kerr-frequency combs from an all-silica narrow-linewidth microresonator/fiber laser system[J]. Optics Express, 28, 38304(2020).

    [80] Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy[J]. Science, 354, 600-603(2016).

    [81] Su P, Han Z, Kita D, et al. Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector[J]. Applied Physics Letters, 114, 051103(2019).

    [82] Bailey D M, Zhao G, Fleisher A J. Precision spectroscopy of nitrous oxide isotopocules with a cross-dispersed spectrometer and a mid-Infrared frequency comb[J]. Analytical Chemistry, 92, 13759-13766(2020).

    [83] Abbas M A, Pan Q, Mandon J, et al. Time-resolved mid-infrared dual-comb spectroscopy[J]. Scientific Reports, 9, 17247(2019).

    [84] Liang Q, Chan Y C, Changala P B, et al. Ultrasensitive multispecies spectroscopic breath analysis for real-time health monitoring and diagnostics[J]. Proceedings of the National Academy of Sciences, 118, e2105063118(2021).

    [85] Lin H, Luo Z, Gu T, et al. Mid-infrared integrated photonics on silicon: a perspective[J]. Nanophotonics, 7, 393-420(2017).

    [86] Sterczewski L A, Bagheri M, Frez C, et al. Mid-infrared dual-comb spectroscopy with room-temperature bi-functional interband cascade lasers and detectors[J]. Applied Physics Letters, 116, 141102(2020).

    [87] Yao B, Huang S W, Liu Y, et al. Gate-tunable frequency combs in graphene–nitride microresonators[J]. Nature, 558, 410-414(2018).

    [88] Tan T, Yuan Z, Zhang H, et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator[J]. Nature Communications, 12, 6716(2021).

    [89] Zhang L, Ding J, Zheng H, et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics[J]. Nature Communications, 9, 1481(2018).

    [90] Zhang X, Cao Q T, Wang Z, et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface[J]. Nature Photonics, 13, 21-24(2019).

    [91] Jiang X, Shao L, Zhang S X, et al. Chaos-assisted broadband momentum transformation in optical microresonators[J]. Science, 358, 344-347(2017).

    [92] Diddams S A, Vahala K, Udem T. Optical frequency combs: Coherently uniting the electromagnetic spectrum.[J]. Science, 369, eaay3676(2020).

    [93] Stern B, Ji X, Okawachi Y, et al. Battery-operated integrated frequency comb generator[J]. Nature, 562, 401-405(2018).

    [94] Shen B, Chang L, Liu J, et al. Integrated turnkey soliton microcombs[J]. Nature, 582, 365-369(2020).

    [95] Tan T, Peng C, Yuan Z, et al. Predicting Kerr soliton combs in microresonators via deep neural networks[J]. Journal of Lightwave Technology, 38, 6591-6599(2020).

    [96] Xu X, Tan M, Corcoran B, et al. 11 TOPS photonic convolutional accelerator for optical neural networks[J]. Nature, 589, 44-51(2021).

    [97] Feldmann J, Youngblood N, Karpov M, et al. Parallel convolutional processing using an integrated photonic tensor core[J]. Nature, 589, 52-58(2021).

    CLP Journals

    [1] Yaohu Cui, Zixiong Wang, Yitong Xu, Xunhe Zuo, Yang Jiang, Jinlong Yu, Zhanhua Huang. Approach to generation of flat optical frequency comb using cascaded phase modulator and intensity modulator[J]. Infrared and Laser Engineering, 2023, 52(5): 20220756

    [2] Dongdong Han, Zeyang Fan, Kaili Ren, Yipeng Zheng, Tiantian Li, Zhanqiang Hui, Jiamin Gong. Automatic mode-locked fiber laser based on K-means algorithm[J]. Infrared and Laser Engineering, 2023, 52(5): 20220609

    Tools

    Get Citation

    Copy Citation Text

    Junting Du, Bing Chang, Zhaoyu Li, Hao Zhang, Chenye Qin, Yong Geng, Teng Tan, Heng Zhou, Baicheng Yao. Mid-infrared optical frequency combs: Progress and applications (Invited)[J]. Infrared and Laser Engineering, 2022, 51(3): 20210969

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue-Mid-infrared integrated optoelectronic technology

    Received: Dec. 15, 2021

    Accepted: --

    Published Online: Apr. 8, 2022

    The Author Email: Teng Tan (tanteng_ph.d@std.uestc.edu.cn)

    DOI:10.3788/IRLA20210969

    Topics